Monotone maps for partial orders on matrix semigroups

Alexander Guterman

Moscow State University

This talk is based on the following works

A. Guterman, X. Mary, P. Shteyner, Semigroup Forum, 98(1) 6474
A. Guterman, X. Mary, P. Shteyner, J. Math. Sci., 232(6) 783-796
M. Efimov, A. Guterman, J. of Math. Inequalities, 10(1), 123-133
M. Efimov, A. Guterman, Operators&Matrices, 9(3), 711-731
G. Dolinar, A. Guterman, and J. Marovt, Mathematical Inequalities and Applications, 17(2), 573-689

G. Dolinar, A. Guterman, and J. Marovt, Operators&Matrices, 7(1), 225-239

- M. Efimov, A. Guterman, J. Math. Sci. 191(1), 36 51
- I. Bogdanov, A. Guterman, Mat. Sbornik, 198(1), 3-20
- A. Guterman, Mat. Zametki, 81(5), 681-692
- A. Alieva, A. Guterman, Comm. in Algebra. 33, 3335-3352
- A. Guterman, Lect.Notes in Pure.Appl.Math. 235, 311-328
- A. Guterman, Comm. in Algebra. 29(9), 3905-3917
- A. Guterman, LAA 331, 75-87

Dedekind, 1880

 $G \text{ is a group, } |G| = n < \infty$ $\begin{bmatrix} G & x_1 & \dots & x_i & \dots & x_n \\ x_n & & & \vdots \\ \vdots & & & \vdots \\ x_j & \dots & & x_k = x_i \cdot x_j \\ \vdots & & & & \\ x_1 & & & \\ \end{bmatrix}$ Cayley $table K_G$ $Table K_G$ $R = \det(K_G) \text{ is homogeneous, } \deg P = n.$

Theorem: G is abelian \Rightarrow det $K_G = (a_1^1 x_1 + \ldots + a_n^1 x_n) \cdots (a_1^n x_1 + \ldots + a_n^n x_n)$

Cayley table

		0	1	2
	G	x	y	z
2	z	z	x	y
1	y	y	z	\boldsymbol{x}
0	x	\boldsymbol{x}	y	\boldsymbol{z}

 $\det (K_{\mathbb{Z}_3}) = x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x + \varepsilon y + \varepsilon^2 z)(x + \varepsilon^2 y + \varepsilon z)$ $\varepsilon = e^{\frac{2\pi}{3}i}$

Character table

	(0)	(1)	(2)
χ_1	1	1	1
<i>χ</i> 2	1	ε	ε^2
χ3	1	ε^2	ε

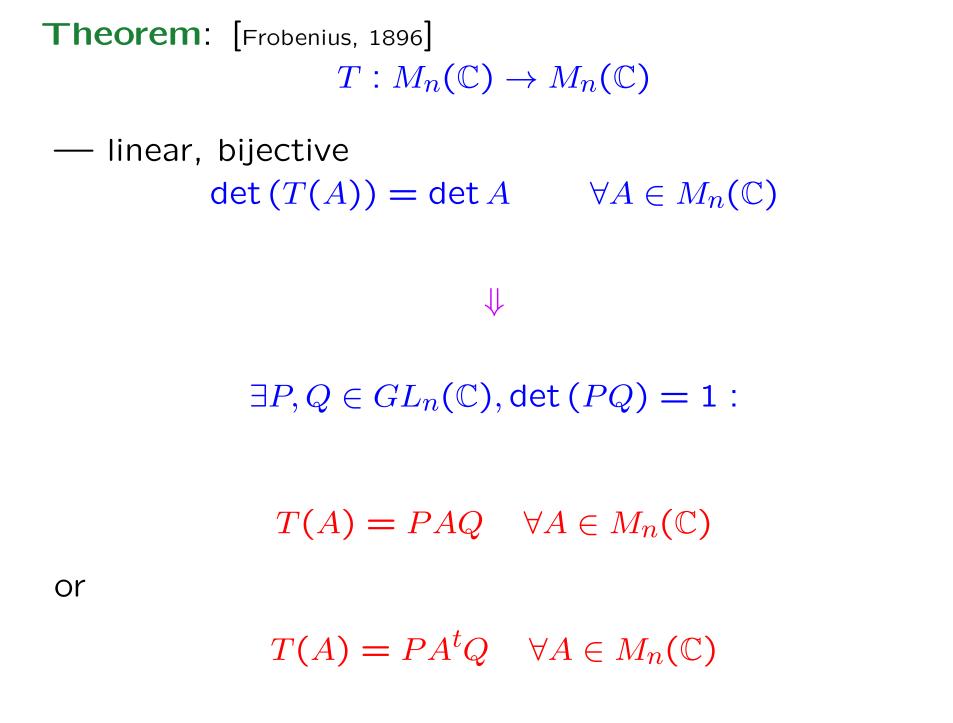
The noncommutative case

- 1. Dedekind: S_3 , \mathbb{Q}_8
- 2. Frobenius, 1896: G is ANY finite group:

Theorem: det $(K_G) = P_1^{n_1} \cdots P_k^{n_k}$, P_i is irreducible, deg $(P_i) = n_i$, $i = 1, \dots, k$.

$$\chi_j(x_i) = \frac{\partial P_i}{\partial x_j}(0, \dots, 0, 1, 0, \dots, 0)$$

$$j\text{-th position}$$



Theorem: [Dieudonné, 1949] $\Omega_n(\mathbb{F})$ is the set of singular matrices $T : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ — linear, bijective, $T(\Omega_n(\mathbb{F})) \subseteq$ $\Omega_n(\mathbb{F})$ \Downarrow

$\exists P, Q \in GL_n(\mathbb{F})$

 $T(A) = PAQ \quad \forall A \in M_n(\mathbb{F})$

or

 $T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{F})$

The quantity of Linear Preservers for a given matrix invariant is a measure of its complexity. Indeed, to compute the invariant for a given matrix, we reduce it to a certain good form, where computations are easy.

$$\det(A) = \sum_{\sigma \in S_n} (-1)^n a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

• Computations of det require $\sim O(n^3)$ operations

$$per(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

Computations of per require

 $\sim (n-1) \cdot (2^n - 1)$ multiplicative operations (Raiser formula). There are just few linear preservers of permanent in comparison with the determinant. Indeed,

Theorem: [Marcus, May] Linear transformation T is permanent preserver. Then $T(A) = P_1 D_1 A D_2 P_2 \quad \forall A \in M_n(\mathbb{F}), \text{ or}$ $T(A) = P_1 D_1 A^t D_2 P_2 \quad \forall A \in M_n(\mathbb{F})$

here D_i are invertible diagonal matrices, i = 1, 2,

 P_i are permutation matrices, i = 1, 2.

• Group theory

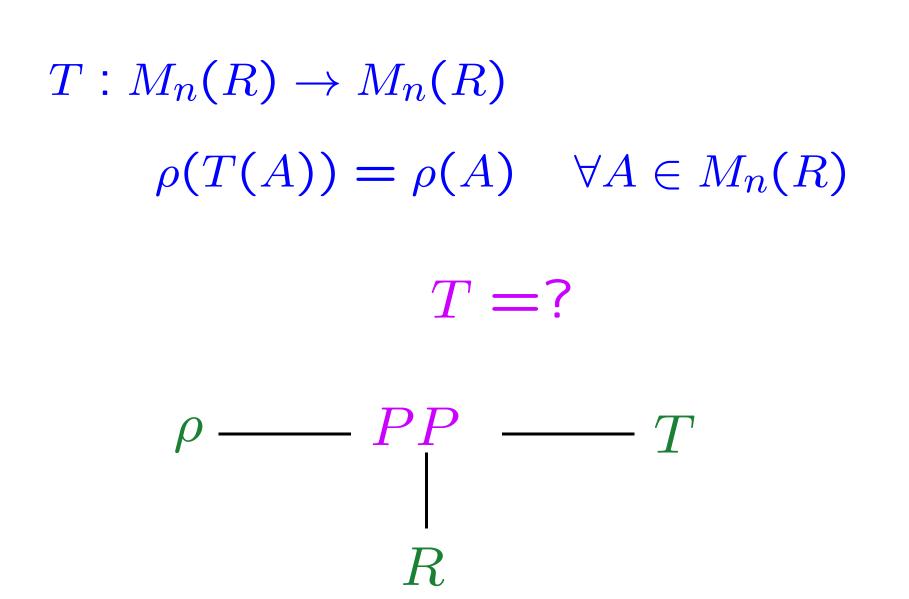
Question Is it possible that two non-isomorphic finite groups have the same group determinant?

Theorem: [E. Formanek, D. Sibley] A group determinant determines the group up to an automorphism

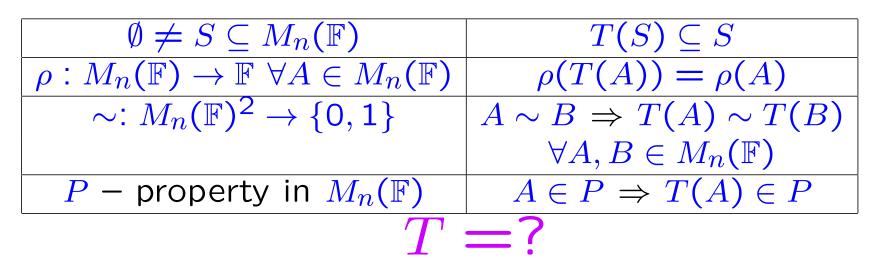
Proof is based on an extension of Dieudonne singularity preserver theorem to the direct products of matrix algebras.

Preserve Problems

 $ho: M_n(R)
ightarrow S$ is a certain matrix invariant



Let \mathbb{F} be a field



The standard solution

There are $P, Q \in GL_n(\mathbb{F})$:

 $T(X) = PXQ \quad \forall X \in M_n(\mathbb{F})$

or

 $T(X) = PXQ \quad \forall X^t \in M_n(\mathbb{F})$

Basic methods to investigate PPs

- 1. Matrix theory
- 2. Theory of classical groups
- 3. Projective geometry
- 4. Algebraic geometry
- 5. Differential geometry
- 6. Dualisations
- 7. Tensor calculus
- 8. Functional identities

Monotone transformations

Minus order relation

Let S be a semigroup, $\mathcal{I}(S)$ be the set of idempotents in S.

Wagner order on $\mathcal{I}(S)$: let $f, e \in \mathcal{I}(S)$. Then $e \leq f$ iff ef = fe = e. $a \in S$ is (von Neumann) regular in S if $a \in aSa$. A solution of axa = a is called an *inner inverse* and is denoted by a^- . The set of all inner inverses: $a\{1\}$. A solution of xax = x is called an *outer inverse*. The set of all outer inverses: $a\{2\}$.

 $a\{1,2\} = a\{1\} \cap a\{2\}$ — reflexive inverses.

Hartwig-Nambooripad order on regular elements: let $a, b \in S$ be regular. Then $a \leq b$ iff $\exists a^- \in a\{1\}$: $aa^- = ba^-$ and $a^-a = a^-b$.

Can we tackle this order using matricial tools on $M_n(\mathbb{F})$?

Rank-subtractivity: $A, B \in M_n(\mathbb{F})$. Then $A \leq B$ iff $\operatorname{rk} (B - A) = \operatorname{rk} B - \operatorname{rk} A$. **Lemma**: [Mitsch, 86] For a regular semigroup S TFAE

- a = eb = bf for some $e, f \in E(S)$;
- a = aa'b = ba''a for some $a', a'' \in a\{1, 2\};$
- a = aa'b = ba'a for some $a' \in a\{1, 2\}$;
- $\exists a' \in a\{1,2\}$: a'a = a'b, aa' = ba' [Hartwig, 80];
- a = ab'b = bb'a, a = ab'a for some $b' \in b\{1, 2\}$;
- a = axb = bxa, a = axa, b = bxb for some $x \in S$;
- a = eb and $aS \subseteq bS$ for some idempotent e: $aS^1 = eS^1$, see also [Nambooripad, 80];
- a = xb = by, xa = a for some $x, y \in S$.

Definition.

- $a\mathcal{J}b$ iff a = eb = bf for some $e, f \in E(S)$ Jones rel.;
- a < b iff $a^-a = a^-b$ and $aa^- = ba^-$ for some $a^- \in a\{1\}$;
- aNb iff a = axa = axb = bxa for some $x \in S$ –

Nambooripad relation;

- $a\mathcal{M}b$ iff a = xb = by, xa = a for some $x, y \in S^1$ Mitsch
- $a\mathcal{P}b$ iff a = pa = pb = bp = ap for some $p \in S^1$ Petrich
- $a\mathcal{H}b$ iff a = bxb for some $x \in S^1$ and $b\{1\} \subseteq a\{1\}$ Hartwig relation.

Theorem: For any S, it holds that $\mathcal{N} \subseteq \mathcal{J} \subseteq \mathcal{M}$, (\mathcal{N} is stronger than \mathcal{J} which is stronger than \mathcal{M}), \mathcal{N} , \mathcal{M} , \mathcal{P} are partial orders, \mathcal{M} , \mathcal{P} are always reflexive, but \mathcal{N} is reflexive only on regular semigroups.

For regular semigroups, all these relations coincide.

Lemma: *S* is a semigroup. Then $<^- = \mathcal{N}$.

Characterization via outer inverses:

Theorem: [Guterman, Mary, Shteyner] Let $a, b \in S$. TFAE

- $a\mathcal{N}b$;
- $a = bb^{=}b$ for some $b^{=} \in b\{2\}$;
- $a = ab^{=}a = ab^{=}b = bb^{=}a$ for some $b^{=} \in b\{2\}$;
- $a = ab_l^{=}a = ab_l^{=}b = bb_r^{=}a$ for some $b_l^{=}, b_r^{=} \in b\{2\}$;
- a = axa = axb = bya for some $x, y \in S$;
- a = axa = axb = bxa for some $x \in S$.

By definition, for $a, b \in S$, aNb implies that a is regular. To compare non-regular elements, we define the relation Γ as follows:

Definition. Let $a, b \in S$. Then $a \Gamma b$ if there exist $x, y \in S^1$ such that a = axb = bya and $b\{1\} \subseteq a\{1\}$.

 $\Gamma \subseteq \mathcal{H}$ since $a \Gamma b$ implies a = byaxb for $a, b \in S$.

Definition. Let $a, b \in S$. We define Γ_l , Γ_r , Γ_P as follows:

• If *b* is not regular, then $a \Gamma_l b$ (resp. $a \Gamma_r b$, $a \Gamma_r b$) iff $\exists x \in S^1$: a = axb (resp. $\exists y \in S^1$: a = bya, $\exists x \in S^1$: a = axb = bxa);

• If *b* is regular, then $a \Gamma_l b$ (resp. $a \Gamma_r b$, $a \Gamma_r b$) iff $\exists x, y \in S^1$: a = axa = axb = bya (resp. $\exists x, y \in S^1$: a = aya = axb = bya, $\exists x \in S^1$: a = axa = axb = bxa).

Theorem: [Guterman, Mary, Shteyner]

1. $\Gamma_{\mathcal{P}} = \Gamma_l \cap \Gamma_r$.

2. S is a regular semigroup. Then $\Gamma_l = \Gamma_{\mathcal{P}} = \Gamma_r$.

Let \mathcal{S} be a semigroup.

Definition. Involution * on S is a bijection $a \to a^* \forall a \in S$: 1) $(a^*)^* = a$, 2) $(ab)^* = b^*a^* \quad \forall a, b \in S$.

* is a proper involution if

$$\underline{a^*a = a^*b = b^*b = b^*a}$$

$$a = b$$

 \downarrow

We consider only semigroup with the proper involution, *-semigroups. Examples: Boolean rings, groups, proper *-rings, in particular, $M_n(R)$, $M_n(\mathbb{C})$. **Definition**. For $a, b \in S$ a Drazin Star Partial Order is the following relation:

$$a \stackrel{*}{\leqslant} b$$
 iff $\begin{cases} a^*a = a^*b\\ aa^* = ab^* \end{cases}$

Theorem: [M.P. Drazin] If S is a proper *-semigroup then

$$\stackrel{*}{\leqslant} is \begin{cases} reflexive \\ anti-symmetric \\ transitive \end{cases}$$

Matrix partial orderings are important due to their statistical applications, $\mathcal{S} = M_n(\mathbb{F})$ Let $\mathcal{M}(A)$ denotes the linear span of columns of a matrix $A \in M_{mn}(\mathbb{F})$.

Left *-order and right *-order:

Definition. [J. Baksalary, S. Mitra, LAA, 1991] For $A, B \in M_{mn}(\mathbb{C})$ we say that $A \leqslant B$ iff $A^*A = A^*B$ and $\mathcal{M}(A) \subseteq \mathcal{M}(B)$.

Definition. [J. Baksalary, S. Mitra] For $A, B \in M_{mn}(\mathbb{C})$ we say that $A \leq *B$ iff $AA^* = BA^*$ and $\mathcal{M}(A^*) \subseteq \mathcal{M}(B^*)$. **Definition**. [J. Baksalary, J. Hauke] For $A, B \in M_{mn}(\mathbb{F})$ we say that $A \stackrel{\diamond}{\leq} B$, iff

 $\begin{cases} \operatorname{Im} (A) \subseteq \operatorname{Im} (B) \\ \\ \operatorname{Im} (A^*) \subseteq \operatorname{Im} (B^*) \\ \\ \\ AA^*A = AB^*A \end{cases}$

This relation is called a diamond order.

Definition. A group generalized inverse matrix A^{\sharp} for a fixed matrix $A \in M_n(\mathbb{F})$ is defined to be a reflexive generalized inverse matrix (the solution of both AXA =A and XAX = X) which commutes with the matrix A.

Definition. A matrix *A* is said to be of index k if Im $A \supseteq Im A^2 \supseteq ... \supseteq Im A^k = Im A^{k+1} = ...$

Theorem: [S.-K. Mitra] $A \in M_n(\mathbb{F})$ has a group generalized inverse matrix iff A is of index 1. **Definition**. [S.-K. Mitra] Let $A \in M_n(\mathbb{F})$ be a matrix of index 1 and $B \in M_n(\mathbb{F})$ be an arbitrary matrix. We say that $A \stackrel{\sharp}{\leq} B$ iff

$$AA^{\sharp} = BA^{\sharp} = A^{\sharp}B.$$

Definition. The core-nilpotent decomposition of a square matrix $A \in M_n(F)$ is $A = C_A + N_A$, where N_A is nilpotent matrix and C_A is a matrix of index 1, moreover $C_A N_A = N_A C_A = 0$. $\exists !$

Definition. [R. Hartwig, S.-K. Mitra]

$$A \stackrel{\mathsf{cn}}{\leqslant} B, \text{ iff } \begin{cases} C_A \stackrel{\sharp}{\leqslant} C_B\\ N_A \stackrel{\xi}{\leqslant} N_B \end{cases}$$

Another way to define the orders

Let S be a semigroup, S^1 — monoid generated by S.

Definition. $a, d \in S$. a is invertible along d if $\exists b \in S$: bad = d = dab and $b \in dS^1 \cap S^1 d$.

Theorem: [Mary] If $\exists b$ then $b \in a\{2\}$ and b is unique. It is denoted by a^{-d} .

Another characterization:

Theorem: [Mary] $a \in S$ is invertible along $d \in S$ if and only if $\exists b \in S$: bab = b, $bS^1 = dS^1$, $S^1b = S^1d$. In this case $a^{-d} = b$. **Theorem**: [Mary] Let $a, d \in S$. Then a^{-d} satisfies

$$a^{-d} = d(ad)^{\#} = (da)^{\#}d$$

and belongs to the double centralizer (double commutant) of $\{a, d\}$. Also $\exists a^{-d} \Leftrightarrow d \in dadS^1 \cap S^1 dad$.

For specific choices of d we have:

Theorem: [Mary]

- 1. $a^{\#} = a^{-a}$,
- 2. $a^{\dagger} = a^{-a^*}$,
- 3. $a^D = a^{-a^k}$ for $k \in \mathbb{N}$,

here $a \in S$ has a Drazin inverse a^D if a positive power a^k of a is group invertible, then $a^D = (a^{k+1})^{\#} a^k$. Let Θ : $S \to \mathcal{P}(S) = \bigcup_{a \in S} a\{2\}$ — the set of all outer inverses of elements of S — be (multi-valued) function satisfying $\Theta(a) \subseteq a\{2\} \forall a \in S$. **Definition**. Let $a, b \in S$.

1. $a\Gamma^{\Theta}b$ if $\exists b_l, b_r \in \Theta(b)$: $a = ab_lb = bb_ra$ and the corresponding inner inverses satisfy $b\{1\} \subseteq a\{1\}$,

2. If b is not regular, then $a \Gamma_l^{\Theta} b$ if $\exists b_r \in \Theta(b)$: $a = a b_r b$.

- 3. If b is regular, then $a \Gamma_l^{\ominus} b$ if $\exists b_l, b_r \in \Theta(b)$:
- $a = ab_l a = ab_l b = bb_r a.$
- 4. If b is not regular, then $a \Gamma_r^{\Theta} b$ if $\exists b_r \in \Theta(b)$: $a = b b_r a$.
- 5. If b is regular, then $a \Gamma_r^{\Theta} b$ if $\exists b_l, b_r \in \Theta(b)$:
- $a = ab_r a = ab_l b = bb_r a.$
- 6. If b is not reg., $\Rightarrow a \Gamma_{\mathcal{P}}^{\Theta} b$ if $\exists d \in \Theta(b)$: a = adb = bda.
- 7. If b is regular, then $a \Gamma \stackrel{\bigcirc}{\mathcal{P}} b$ if $\exists d \in \Theta(b)$:
- a = aba = adb = bda.

It happens that Γ^{\ominus} is the intersection of Γ_l^{\ominus} and Γ_r^{\ominus} .

Theorem: [Guterman, Mary, Shteyner]

- 1. The relations \mathcal{N}^{Θ} , Γ_{l}^{Θ} , Γ_{r}^{Θ} , $\Gamma_{\mathcal{P}}^{\Theta}$, Γ^{Θ} are partial orders.
- 2. $\mathcal{N}^{\Theta} \subseteq \Gamma_{\mathcal{P}}^{\Theta} \subseteq \Gamma_{l}^{\Theta} \cap \Gamma_{r}^{\Theta} = \Gamma^{\Theta}$.

The following functions \ominus are of special interest:

- $\Theta: b \mapsto b\{2\}$. In this case we have $\mathcal{N}^{\Theta} = \mathcal{N} = <^{-}$
- $\Theta^{\#}$: $b \mapsto \{b^{\#}\}$, the group inverse of b, or Θ^{D} : $b \mapsto \{b^{D}\}$, the Drazin inverse of b
- Let $\Delta : S \to \mathcal{P}(S)$. We pose $\Theta_{\Delta} : b \mapsto \{b^{-d} | d \in \Delta(b)\}$. Here, for $b \in S$, $\Delta(b)$ is not included in $b\{2\}$ in general, but $\Theta(b)$ is.

To simplify the notations, we omit Θ , namely, use $<^{-\Delta}$ (resp. $\mathcal{N}^{-\Delta}$, $\Gamma^{-\Delta}$, $\Gamma_{l}^{-\Delta}$, $\Gamma_{r}^{-\Delta}$, $\Gamma_{\mathcal{P}}^{-\Delta}$) instead of $<^{\Theta}_{\Delta}$ (resp. $\mathcal{N}^{\Theta}_{\Delta}$, Γ^{Θ}_{Δ} , $\Gamma_{l}^{\Theta}_{\Delta}$, $\Gamma_{r}^{\Theta}_{\Delta}$, $\Gamma_{\mathcal{P}}^{\Theta}_{\Delta}$). For instance, if $\Delta^{\#}$ is such that $\Delta^{\#}(b) = b$ for each $b \in S$, then $\Theta_{\Delta^{\#}} = \Theta^{\#}$. Let $C(x) = \{y \in S | yx = xy\}$ the centralizer of x.

Lemma: [Guterman, Mary, Shteyner] Let $\Delta : S \to \mathcal{P}(S)$ satisfies $\Delta(x) \subset C(x)$. Then $a < {}^{-\Delta} b$ implies ab = ba.

Corollary: [Guterman, Mary, Shteyner] Let $\Theta_C : b \mapsto C(b)$. Then $<^{-C}$ is the sharp partial order.

Problem

What are the morphisms of this ordered structure that are monotone?

$$T: \mathcal{S} \to \mathcal{S}$$

 $orall a, b \in \mathcal{S}, \quad a \stackrel{*}{<} b \Rightarrow T(a) \stackrel{*}{<} T(b)$

Below $S = M_n(\mathbb{F})$, \mathbb{F} is a field,

 $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$

Definition.

 $T: M_{m,n}(\mathbb{F}) \to M_{m,n}(\mathbb{F})$

preserves the order < (or, T is monotone wrt <), if

 $A < B \Rightarrow T(A) < T(B)$

Definition.

$$T: M_{m,n}(\mathbb{F}) \to M_{m,n}(\mathbb{F})$$

strongly preserves the order < (strongly monotone wrt
<), if</pre>

 $A < B \Leftrightarrow T(A) < T(B)$

P. G. Ovchinnikov:

Theorem: Let *H* be a Hilbert space, dim $H \ge 3$, B(H)be the algebra of bounded linear operators on *H*, *T* : $\mathcal{I}(B(H)) \to \mathcal{I}(B(H))$ be a poset automorphism. Then either $T(P) = APA^{-1} \forall P \in \mathcal{I}(B(H))$ or $T(P) = AP^*A^{-1}$ $\forall P \in \mathcal{I}(B(H))$. Here *A* is a semi-linear bijection $H \to H$ if dim $H < \infty$, and continuous invertible linear or conjugate linear operator, otherwise.

P. G. Ovchinnikov:

Corollary: \mathcal{P} is the set of idempotents in $M_n(\mathbb{C})$, $n \ge 3$. $T: \mathcal{P} \to \mathcal{P}$ is a bijection strongly monotone wrt \leq . Then \exists a semi-linear bijection $L: \mathbb{C}^n \to \mathbb{C}^n$ such that

$$T(X) = LXL^{-1}$$
 or $T(X) = LX^*L^{-1}$

The questions arising

- Can we work with the transformation on the whole $M_n(\mathbb{F})$?
- Can we classify just monotone transformations, which are not strongly monotone?
- Can we work with some other order relations?

Linear case Matrix deformation approach

Definition. For a given binary matrix relation

 $\sim : M_n(\mathbb{F}) \times M_n(\mathbb{F}) \to \{0, 1\}$

we consider a deformation which is a subset

 $L_{\mathbb{F}}(\sim) \subseteq M_n(\mathbb{F}),$

 $L_{\mathbb{F}}(\sim) := \{ X \in M_n(\mathbb{F}) | \exists 0 \neq R, S \in M_n(\mathbb{F}) : \\ \forall \lambda \in \mathbb{F} \qquad R \sim (\lambda X + S) \}.$ WHY DO WE NEED THIS NOTION?

The properties

Lemma: \sim_1, \sim_2 are binary relations on $M_n(\mathbb{F})$ and for all $A, B \in M_n(\mathbb{F})$

 $A \sim_1 B \Rightarrow A \sim_2 B$

Then $L_{\mathbb{F}}(\sim_1) \subseteq L_{\mathbb{F}}(\sim_2).$

Lemma: $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$ is linear and bijective; T preserves \sim $(\forall A, B \in M_n(\mathbb{F}) \text{ if } A \sim B \text{ then } T(A) \sim T(B))$ Then

 $T(L_{\mathbb{F}}(\sim)) \subseteq L_{\mathbb{F}}(\sim)$

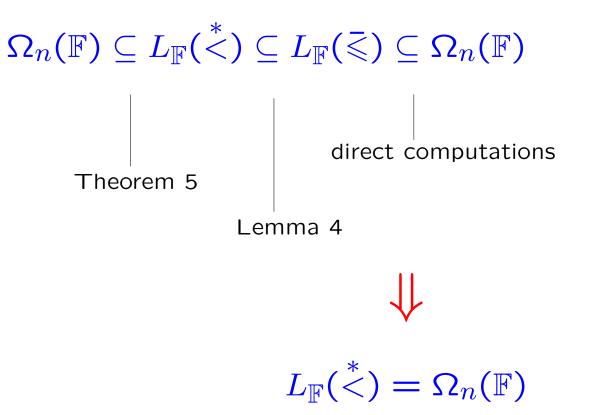
Why $L_{\mathbb{F}}(\sim)$ is better than \sim ?

Theorem: \mathbb{F} is a field of complex or real numbers. Then $\Omega_n(\mathbb{F}) \subseteq L_{\mathbb{F}}(\overset{*}{\leq}).$

the set of singular matrices

<u>*Proof.*</u> Based on the properties of the singular value decomposition. **Definition.** [R. Hartwig, K. Nambooripad] The Minus-order: $A \leq B$ if rk(B - A) = rkB - rkA.

Corollary: There is a following set inclusion:



Proposition. Let $T : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ be a linear and bijective transformation which is monotone with respect to the Drazin star partial order. Then T is a singularity preserver

i.e., $T(\Omega_n(\mathbb{F})) \subseteq \Omega_n(\mathbb{F})$.

Corollary: (Proposition + Dieudonné Theorem)

All linear maps which are monotone w.r.t. the Drazin star partial order are standard!

What are the standard linear transformations which leave the star-order invariant?

Theorem: Bijective linear $T : M_{mn}(\mathbb{F}) \to M_{mn}(\mathbb{F})$ monotone w.r.t. $\overset{*}{\leqslant}$ is of the form

 $T(X) = \alpha P X Q$ or,

if m = n, $T(X) = \alpha P X^t Q$,

 $P, Q \in GL_n(\mathbb{F})$ are unitary, $\alpha \in \mathbb{F}^*$.

Definition. [J. Baksalary, J. Hauke] Let $A, B \in M_{mn}(\mathbb{F})$ we say that $A \stackrel{\sigma}{\leq} B$, if $A \stackrel{\overline{\leq}}{\leq} B$ and $\sigma(A) \subseteq \sigma(B)$.

Definition. [J. Gross] For $A, B \in M_{mn}(\mathbb{F})$ it is said that $A \stackrel{\sigma_1}{\leq} B$, if $A \stackrel{\sim}{\leq} B$ and $\sigma_1(A) < \sigma_1(B)$.

Here $\sigma(A)$ and $\sigma_1(A)$ denote nonzero singular values (the square roots of the eigenvalues of AA^*) and, respectively, maximal singular value of complex or real matrices.

Bijective monotone maps

P. Šemrl:

Theorem: $\mathcal{P}_n \subset M_n(\mathbb{F})$ is a set of all idempotents. $|\mathbb{F}| \geq 3$, $n \geq 3$,

$$T:\mathcal{P}_n\to\mathcal{P}_n$$

is a bijection monotone wrt \leq . Then $\exists \varphi : \mathbb{F} \to \mathbb{F}$ automorphism and $A \in GL_n(\mathbb{F})$:

$$T(X) = AX^{\varphi}A^{-1} \quad \forall X \in \mathcal{P}$$

or

$$T(X) = A(X^{\varphi})^{t} A^{-1} \quad \forall X \in \mathcal{P}$$

 $X^{\varphi} = [\varphi(x_{ij})]$ for $X = [x_{ij}]$

• Can a semigroup became a group ?

Does bijectivity follow from monotonicity?

• What happens in the non-linear case?

Additive monotone maps

Definition. \leq_1 on $M_{mn}(\mathbb{F})$ is weaker than \leq_2 , if for all $A, B \in M_{mn}(\mathbb{F})$

$$A \preceq_2 B \Rightarrow A \preceq_1 B.$$

In this case \leq_2 is stronger than \leq_1 .

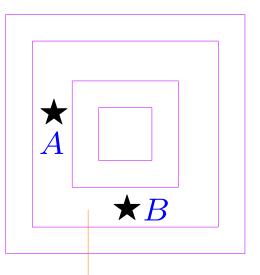
Examples.

$$\begin{array}{c} * \\ \leqslant \\ \Rightarrow \\ \ast \\ \Rightarrow \\ \ast \\ \ast \\ \Rightarrow \\ \leqslant \\ \ast \\ \Rightarrow \\ \leqslant \\ \end{cases}$$

Definition. A partial order \leq on $M_{mn}(\mathbb{F})$ is called unitary invariant, if for arbitrary matrices $A, B \in M_{mn}(\mathbb{F})$ the inequality $A \leq B$ is equivalent to $UAV \leq UBV$ for all $U \in U_n(\mathbb{F}), V \in U_m(\mathbb{F}).$

Examples. All aforesaid order relations are unitary invariant.

The partial order relations on $M_{mn}(\mathbb{F})$, we have defined, behave well with respect to the rank function on matrices, namely:



r-th component which consists of matrices of the fixed rank equal to r

 $\forall A, B \in M_{mn}(\mathbb{F})$ fixed (i) if $A \preceq B$, then $\operatorname{rk} A \leq \operatorname{rk} B$; (ii) if $A \preceq B$ and $\operatorname{rk} A = \operatorname{rk} B$, then A = B.

Definition. We say that an order relation \leq on $M_{mn}(\mathbb{F})$ is regular, if it satisfies (i), (ii) and also (iii) \prec is unitary invariant

(iv) \leq is weaker than Drazin order

Regular orders and corresponding monotone transformations

Let T be fixed.

We find and fix some matrix $Z \in M_{m,n}(\mathbb{F})$ such that the following two conditions hold simultaneously:

a) rkZ = 1 and

b) for all $X \in M_{m,n}(\mathbb{F})$, which satisfy the condition $\operatorname{rk} X =$ 1, we have

 $\operatorname{rk} T(X) \leq \operatorname{rk} T(Z).$

Let $Z = \zeta U_Z E_{1,1} V_Z$ be a singular value decomposition of Z.

We define $\widehat{T}_Z : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ by

 $\widehat{T}_Z(X) = T(\zeta U_Z X V_Z)$ for all $X \in M_n(\mathbb{F})$

Then

a) $\forall A, \operatorname{rk} A = 1 \Rightarrow \operatorname{rk} \widehat{T}_Z(A) \leq \operatorname{rk} \widehat{T}_Z(E_{1,1}).$

b) \widehat{T}_Z is additive and monotone with respect to the order \leq . **Theorem**: [Alieva, Guterman] Let \leq be a regular partial order relation on $M_{mn}(\mathbb{F})$. Assume that

 $T: M_{m\,n}(\mathbb{F}) \to M_{m\,n}(\mathbb{F})$

be an additive monotone map with respect to order \leq . Then *T* has one of the following forms: 1) $T(X) = PX^{\varphi}Q$ for all $X \in M_{m,n}(\mathbb{F})$, 2) (if m = n) $T(X) = P(X^{\varphi})^t Q$ for all $X \in M_n(\mathbb{F})$, 3) T(X) = 0 for all $X \in M_{mn}(\mathbb{F})$,

here $\varphi : \mathbb{F} \to \mathbb{F}$ is a field endomorphism, $X^{\varphi} = [\varphi(x_{i,j})]$, where $X = [x_{i,j}]$, $P \in GL_m(\mathbb{F}), Q \in GL_n(\mathbb{F}).$ **Corollaries** If additive T is monotone wrt regular \leq then T is "bijective" up to φ .

If \mathbb{F} has the property: all non-zero endomorphisms are automorphisms, then T is automatically bijective.

Theorem: Additive transformations over \mathbb{C} monotone wrt any of $\stackrel{*}{\leqslant}$, $*\leqslant$, \leqslant , $\stackrel{\diamond}{\leqslant}$, $\stackrel{\sigma_1}{\leqslant}$, then *T* is automatically bijective.

In comparison with linear case: there are additive non-bijective monotone wrt minus-order transformations, in particular, over \mathbb{C}

Examples of orders which are not unitary invariant:

Definition. [S.-K. Mitra] Let $A \in M_n(\mathbb{F})$ be a matrix of index 1 and $B \in M_n(\mathbb{F})$ be an arbitrary matrix. We say that $A \stackrel{\sharp}{\leq} B$ iff

$$AA^{\sharp} = BA^{\sharp} = A^{\sharp}B.$$

Definition. [R. Hartwig, S.-K. Mitra]

$$A \stackrel{\mathsf{cn}}{\leqslant} B, \text{ iff } \begin{cases} C_A \stackrel{\sharp}{\leqslant} C_B\\ N_A \stackrel{\xi}{\leqslant} N_B \end{cases}$$

Non-regular orders

- I. Bogdanov, A. Guterman,
- M. Efimov, A. Guterman

Lemma: Let
$$A_1, \ldots, A_n \in M_n(\mathbb{F})$$
. Then TFAE:
1. $0 \stackrel{\sharp}{<} A_1 \stackrel{\sharp}{<} \cdots \stackrel{\sharp}{<} A_n$
2. $0 \stackrel{cn}{<} A_1 \stackrel{cn}{<} \cdots \stackrel{cn}{<} A_n$

3. $\forall i = 1, ..., n A_i$ are diagonalizable matrices of rank *i* in the same basis.

Definition. Let $A \in M_n(\mathbb{F})$ $\mathcal{D}(A) := \left\{ B \in M_n(\mathbb{F}) | A, B \begin{array}{c} \text{are simultaneously} \\ \text{diagonalizable} \end{array} \right\}$ $A \text{ is not diagonalizable} \Rightarrow D(A) = \emptyset$ **Definition**. $T : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ preserves simultaneous diagonalizability if $T(D(A)) \subseteq D(T(A))$

Corollary: *T* additive, monotone with respect to $\stackrel{\text{cn}}{\leq}$ or $\stackrel{\text{cn}}{\leq} \rightarrow T$ preserves simultaneous diagonalizability.

Theorem: [Omladič, Šemrl] $\mathbb{F} = \mathbb{C}$, n > 3, linear T: $M_n(\mathbb{F}) \to M_n(\mathbb{F})$ preserves the set of diagonalizable matrices iff $T(A) = cPAP^{-1} + f(A)I$ or $T(A) = cPA^tP^{-1} + f(A)I$ for some $P \in GL_n(\mathbb{F})$, $c \in \mathbb{F}^*$, f - linear functional on $M_n(\mathbb{F})$, $f(I) \neq -c$.

using Motzkin-Taussky Theorem

Theorem: Let \mathbb{F} be a field,

char $\mathbb{F} \neq 2$, $n \geq 2$ be integer. Then additive $T: M_n(\mathbb{F}) \rightarrow M_n(\mathbb{F})$ is monotone with respect to either $\stackrel{\sharp}{\leqslant}$ or $\stackrel{cn}{\leqslant}$ partial order iff either $T \equiv 0$ or there exist $\alpha \in \mathbb{F}^*$, $P \in GL_n(\mathbb{F})$ and endomorphism $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ such that T has one of the following forms:

 $T(X) = \alpha P X^{\varphi} P^{-1} \quad \forall X \in M_n(\mathbb{F})$ or $T(X) = \alpha P (X^{\varphi})^t P^{-1} \quad \forall X \in M_n(\mathbb{F})$ Example Let $|\mathbb{F}| = n = 2$. Then linear transformation defined on basis by $T(E_{ii}) = E_{ii}, T(E_{ij}) = I + E_{ij}$ if $i \neq j$ is monotone with respect to $\stackrel{\sharp}{\leqslant}, \stackrel{cn}{\leqslant}$, but non-standard. What about non-linear transformations?

What about non-linear transformations?

Example Let $I_n^1(\mathbb{F})$ be the set of matrices of index 1, $M_1 = M_n(\mathbb{F}) \setminus I_n^1(\mathbb{F}).$

- Let T(A) = A for all $A \in I_n^1(\mathbb{F})$,
- $T|_{M_1}$ is an arbitrary bijection.

Then T is bijective, T is monotone with respect to $\stackrel{\sharp}{\leqslant}$, but T can be non-standard.

What about non-linear transformations?

Example Let $I_n^1(\mathbb{F})$ be the set of matrices of index 1, $M_1 = M_n(\mathbb{F}) \setminus I_n^1(\mathbb{F}).$

Let T(A) = A for all $A \in I_n^1(\mathbb{F})$,

 $T|_{M_1}$ is an arbitrary bijection.

Then T is bijective, T is monotone with respect to $\stackrel{\sharp}{\leqslant}$, but T can be non-standard.

We need some additional assumptions on T or \mathbb{F} or special subset $S \subset M_n(\mathbb{F})!$

Counting functions:

Definition. $k_A \colon \mathbb{F} \times \mathbb{N} \to \mathbb{Z}_+$:

for $\lambda \in \mathbb{F}$ and $r \in \mathbb{N}$, $k_A(\lambda, r) =$ number of Jordan blocks

of A of the size r corresponding to λ .

If there are no Jordan blocks of A with λ of the size r then $k_A(\lambda, r) = 0$.

 $K_A \colon \mathbb{F} \to \mathbb{Z}_+$ is the total number of Jordan blocks of A corresponding to λ ,

$$K_A(\lambda) = \sum_{r=1}^{\infty} k_A(\lambda, r).$$

Definition. Let \mathbb{F} be any field, $A \in M_n(\mathbb{F})$, $A = C_A + N_A$ be the core-nilpotent decomposition of A. The maps $S_A^i : \mathbb{F} \to M_n(\mathbb{F}), i = 1, 2, 3$ are

$$\begin{split} S_A^1(\lambda): & \text{if } \lambda = 0, \ S_A^1(0) = N_A \\ & \text{if } \lambda \neq 0, \ S_A^1(\lambda) = X_\lambda \text{ is such that } X_\lambda \stackrel{\sharp}{\leqslant} A, \\ & K_{X_\lambda}(\lambda) = K_A(\lambda) \text{ and } \operatorname{Spec}(X_\lambda) = \{\lambda, 0\}. \end{split}$$

 $S_A^2(\lambda) = S_{A+I}^1(\lambda+1) - S_A^1(\lambda)$ for all $\lambda \in \mathbb{F}$;

 $S_A^3(\lambda) = S_A^1(\lambda) - \lambda S_A^2(\lambda)$ for all $\lambda \in \mathbb{F}$.

Theorem. [*Efimov*, *Guterman*] These definitions are correct.

Lemma. Let \mathbb{F} be any field, $A \in M_n(\mathbb{F})$, $\lambda \in \overline{\mathbb{F}}$. Then $\exists ! X_{\lambda} \in I_n^1(\mathbb{F})$, $X_{\lambda} \stackrel{\sharp}{\leqslant} A$, $K_{X_{\lambda}}(\lambda) = K_A(\lambda)$ and $\text{Spec}(X_{\lambda}) = \{\lambda, 0\}$.

Properties of these maps:

Theorem. [Efimov, Guterman] Let $A \in M_n(\mathbb{F})$. 1. If $\lambda \notin \text{Spec}(A) \subseteq \mathbb{F}$ then $S_A^i(\lambda) = 0$ for i = 1, 2, 3. 2. $\text{rk}(S_A^2(\lambda)) = \text{deg}_{\chi_A}(z - \lambda)$ is the multiplicity of λ in the characteristic polynomial χ_A . 3. $S_A^i(\lambda) \perp S_A^j(\mu)$ for all $\lambda \neq \mu$, i, j = 1, 2, 3. 4. $S_A^i(\lambda)S_A^2(\lambda) = S_A^2(\lambda)S_A^i(\lambda) = S_A^i(\lambda)$ for all $\lambda \in \mathbb{F}$, i = 1, 2, 3.

- 5. $S^2_A(\lambda)$ is idempotent for all $\lambda \in \overline{\mathbb{F}}$.
- 6. $S^3_A(\lambda)$ is nilpotent for all $\lambda \in \overline{\mathbb{F}}$.

7.
$$A = \sum_{\lambda \in \overline{\mathbb{F}}} S^1_A(\lambda) = \sum_{\lambda \in \overline{\mathbb{F}}} (\lambda S^2_A(\lambda) + S^3_A(\lambda)), I = \sum_{\lambda \in \overline{\mathbb{F}}} S^2_A(\lambda).$$

8. For any polynomial $f \in \overline{\mathbb{F}}[t]$ it holds that

$$f(A) = \sum_{\lambda \in \overline{\mathbb{F}}} (f(\lambda)S_A^2(\lambda) + \frac{f'(\lambda)}{1!}S_A^3(\lambda) + \dots + \frac{f^{(n-1)}(\lambda)}{(n-1)!}(S_A^3(\lambda))^{n-1}).$$

9. $\overline{\mathbb{F}}[A] = \{f(A)\}_{f \in \overline{\mathbb{F}}[t]} = \langle \{S_A^2(\lambda), S_A^3(\lambda), \dots, (S_A^3(\lambda))^{n-1}\}_{\lambda \in \overline{\mathbb{F}}} \rangle$, and nonzero matrices in $\{S_A^2(\lambda), S_A^3(\lambda), \dots, (S_A^3(\lambda))^{n-1}\}_{\lambda \in \overline{\mathbb{F}}}$ are linearly independent.

10. If $\lambda \in \mathbb{F}$ then $S_A^i(\lambda) \in M_n(\mathbb{F})$, i = 1, 2, 3.

11. If A commutes with some $B \in M_n(\mathbb{F})$, then $S_A^i(\lambda)$ commutes with B for all $\lambda \in \mathbb{F}$ and i = 1, 2, 3.

12. If Ind A = 1 and A is orthogonal to some $B \in M_n(\mathbb{F})$ then

a) all matrices $S_A^i(\lambda)$ are orthogonal to B, b) $S_{A+B}^i(\lambda) = S_A^i(\lambda) + S_B^i(\lambda)$ for $\lambda \neq 0$ and i = 1, 2, 3. c) $S_A^i(\lambda) \perp S_B^j(\mu)$ for all $\lambda, \mu \in \mathbb{F} \setminus \{0\}, i, j = 1, 2, 3$. 13. If $A \stackrel{\sharp}{\leq} C$ for some $C \in M_n(\mathbb{F})$, then for all $\Lambda \subset \mathbb{F} \setminus \{0\}$ we have $\sum_{\lambda \in \Lambda} S_A^i(\lambda) \stackrel{\sharp}{\leq} \sum_{\lambda \in \Lambda} S_C^i(\lambda)$, i = 1, 2. In particular, $S_A^i(\lambda) \stackrel{\sharp}{\leq} S_C^i(\lambda)$ for $\lambda \neq 0$ and i = 1, 2. **Definition.** The decompositions

$$A = \sum_{\lambda \in \overline{\mathbb{F}}} S_A^1(\lambda) = \sum_{\lambda \in \overline{\mathbb{F}}} (\lambda S_A^2(\lambda) + S_A^3(\lambda))$$

are called spectrally orthogonal decompositions of A.

Theorem. [Efimov, Guterman] Let \mathbb{F} be algebraically closed, $n \geq 3$, $T: \mathcal{D}_n(\mathbb{F}) \to \mathcal{D}_n(\mathbb{F})$ be monotone with respect to $\stackrel{\sharp}{\leqslant}$ -order and injective. Then $\exists P \in GL_n(\mathbb{F})$, $0 \neq f: \mathbb{F} \to \mathbb{F}$, and injective $\sigma: \mathbb{F} \to \mathbb{F}$ satisfying $\sigma(0) = 0$ such that

$$T(A) = \sum_{\lambda \in \mathbb{F}} \sigma(\lambda) P^{-1}(S_A^2(\lambda))^f P$$
 for all $A \in \mathcal{D}_n(\mathbb{F})$

or

 $T(A) = \sum_{\lambda \in \mathbb{F}} \sigma(\lambda) P^{-1}[(S_A^2(\lambda))^f]^t P \text{ for all } A \in \mathcal{D}_n(\mathbb{F})$

Theorem. [Efimov, Guterman] Let \mathbb{F} be algebraically closed, let $n \geq 3$, and $T: \mathcal{D}_n(\mathbb{F}) \to \mathcal{D}_n(\mathbb{F})$ be strongly monotone with respect to $\stackrel{\sharp}{<}$ -order. Then T is injective and the result of previous theorem holds.

Theorem. [*Efimov*, *Guterman*] Let \mathbb{F} be algebraically closed,

 $M = \{A \in I_n^1(\mathbb{F}) \mid \sum_{\lambda \in \mathbb{F}} K_A(\lambda) = 1\}$ be the set of matrices with the unique Jordan block,

 $T: I_n^1(\mathbb{F}) \to I_n^1(\mathbb{F})$ be bijective and strongly monotone with respect to $\stackrel{\sharp}{<}$ -order with additional assumption

 $T(\lambda I) = \lambda I$ for all $\lambda \in \mathbb{F}$.

Then for any $A \in I_n^1(\mathbb{F}) \setminus M$ there exists $P_A \in GL_n(\mathbb{F})$ such that $T(A) = P_A^{-1}AP_A$.

Here T can be any bijection on M!

Definition. Let $A, B \in M_n(\mathbb{F})$. The matrices A and B are called pairwise orthogonal, $A \perp B$, if AB = BA = 0. **Definition.** The map $T: I_n^1(\mathbb{F}) \to I_n^1(\mathbb{F})$ is 0-additive, if for any matrices $A, B \in I_n^1(\mathbb{F})$ with $A \perp B$ it holds: (i) $T(A) \perp T(B)$; (ii) T(A + B) = T(A) + T(B). **Theorem.** [Efimov, Guterman] Let \mathbb{F} be algebraically closed and $T: I_n^1(\mathbb{F}) \to I_n^1(\mathbb{F})$ be bijective. Then T is strongly monotone with respect to $\stackrel{*}{\leftarrow}$ -order if and only if both T and T^{-1} are 0-additive.

Remark.

1. On $I_n^1(\mathbb{F})$, in particular, on $\mathcal{D}_n(\mathbb{F})$, $\stackrel{\sharp}{\leqslant}$ - and $\stackrel{cn}{\leqslant}$ -orders are equivalent.

2. No linearity or additivity is assumed in above Theorems. **Theorem.** Let $n \ge 3$, $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is injective and continuous, one of a, b, c is true: a) T is monotone with respect to $\stackrel{\sharp}{\leqslant}$ -order; b) T is monotone with respect to $\stackrel{cn}{\leqslant}$ -order; c) T is 0-additive map. Then there are $P \in GL_n(\mathbb{C})$, $\alpha \in \mathbb{C} \setminus \{0\}$ such that

$$T(X) = \alpha P^{-1} X P \quad \text{for all } X \in M_n(\mathbb{C}) \text{ or}$$

$$T(X) = \alpha P^{-1} X^t P \quad \text{for all } X \in M_n(\mathbb{C}) \text{ or}$$

$$T(X) = \alpha P^{-1} \overline{X} P \quad \text{for all } X \in M_n(\mathbb{C}) \text{ or}$$

$$T(X) = \alpha P^{-1} \overline{X}^t P \quad \text{for all } X \in M_n(\mathbb{C}).$$

Corollary. In the conditions of Theorem

- 1. the map T is automatically surjective and \mathbb{R} -linear.
- 2. assumptions (a) and (b) are equivalent.

Example. Let $\mathbb{F} = \overline{\mathbb{F}}$. Assume $T: I_n^1(\mathbb{F}) \to I_n^1(\mathbb{F})$ is bijective, T(M) = M, T(X) = X for all $X \notin M$. Then T is strongly monotone with respect to $\stackrel{\sharp}{<}$ -order.

M is the set of index 1 matrices with unique Jordan block.

Example. Let $\|\cdot\|$ be a norm in $M_n(\mathbb{C})$ and $\varepsilon > 0$ be such that ε -neighborhood of I in the norm $\|\cdot\|$ does not contain singular matrices. Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$:

$$T(X) = \max\{1 - \varepsilon^{-1} || X - I ||, 0\}I.$$

Then T is non-injective continuous $\stackrel{\sharp}{\leqslant}$ -monotone and is not 0-additive, is not \mathbb{R} -linear, does not have the form as in the statement.

Proof. Let $X, Y \in M_n(\mathbb{C})$, Ind X = 1, $X \stackrel{\sharp}{\leqslant} Y$. If $X \notin \varepsilon$ -neighborhood of I then $T(X) = 0 \stackrel{\sharp}{\leqslant} T(Y)$. Otherwise rk X = n. Hence X = Y and T(X) = T(Y). T is not 0-additive: $T(E_{11}) + T(I - E_{11}) = 0 \neq I = T(I)$. The following example convinces us that without continuity assumption even the assumptions of bijectivity and strong monotonicity do not guarantee the that T has good form:

Example. Let $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$:

$$T(A) = \sum_{\lambda \in \mathbb{F}} (\lambda S_A^2(\lambda) - S_A^3(\lambda)).$$

(In the SOD of A via S^2 and S^3 we changed plus to minus).

Then

- (1) T is bijective,
- (2) T is strongly \leq monotone,

(3) on the whole $M_n(\mathbb{F})$ the map T is not additive, so it is not of the form described in Theorem.

Operator semigroups over infinite dimensional spaces

Minus order: $A, B \in B(H)$: $A \leq B$ iff \exists idempotent operators $P, Q \in B(H)$: (i) Im $P = \overline{\text{Im } A}$, (ii) Ker A = Ker Q, (iii) PA = PB,

(iv) AQ = BQ.

Theorem: [Šemrl]

 $\phi \colon B(H) \to B(H)$ is bijective, strongly preserve the minusorder.

Then there exist operators $U, V \colon H \to H$ such that $\phi(A) = \alpha UAV$ for every $A \in B(H)$ or $\phi(A) = \alpha UA^*V$ for every $A \in B(H)$

No additivity or continuity!

Drazin star order: $A, B \in B(H)$: $A*\leq B$ iff \exists self-adjoint idempotent operators $P, Q \in B(H)$: (i) Im $P = \overline{\text{Im } A}$,

- (ii) Ker A = Ker Q,
- (iii) PA = PB,
- (iv) AQ = BQ.

Left-star order: $A, B \in B(H)$: $A*\leq B$ iff \exists self-adjoint idempotent operator $P \in B(H)$ and idempotent operator $Q \in B(H)$: (i) Im $P = \overline{\text{Im } A}$, (ii) Ker A = Ker Q, (iii) PA = PB,

(iv) AQ = BQ.

Left-star order: $A, B \in B(H)$: $A*\leq B$ iff \exists self-adjoint idempotent operator $P \in B(H)$ and idempotent operator $Q \in B(H)$: (i) Im $P = \overline{\text{Im } A}$, (ii) Ker A = Ker Q, (iii) PA = PB,

(iv) AQ = BQ.

 $A* \leq B \text{ iff } A^*A = A^*B \text{ and } Im(A) \subseteq Im(B)$

Theorem: [Dolinar, Guterman, Marovt]

 $\phi \colon B(H) \to B(H)$ is bijective, additive, strongly monotone w.r.t.

left-star (resp., right-star) order.

Then there exist operators $U, V \colon H \to H$,

U (resp., V) is unitary, such that

 $\phi(A) = \alpha UAV$ for every $A \in B(H)$.

Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Drazin star order: $A, B \in B(H)$: $A*\leq B$ iff \exists self-adjoint idempotent operators $P, Q \in B(H)$:

- (i) $\operatorname{Im} P = \overline{\operatorname{Im} A}$,
- (ii) Ker A = Ker Q,
- (iii) PA = PB,

(iv) AQ = BQ.

 $A \stackrel{*}{\leq} B$ iff $A^*A = A^*B$ and $AA^* = BA^*$ (as for matrices)

Theorem: H — separable infinite dimensional complex Hilbert space, K(H) — subspace of compact operators. Let $\phi: K(H) \rightarrow K(H)$ is a bijective, additive and continuous map such that $\forall A, B \in K(H)$

 $A \stackrel{*}{\leqslant} B$ if and only if $\phi(A) \stackrel{*}{\leqslant} \phi(B)$.

 $\Rightarrow \exists 0 \neq \alpha \in \mathbb{C}, U, V \colon H \rightarrow H$ both unitary or both antiunitary:

 $\phi(A) = \alpha UAV \ \forall \ A \in K(H) \text{ or}$ $\phi(A) = \alpha UA^*V \ \forall \ A \in K(H).$

Example

Let $f: (0, \infty) \to (0, \infty)$ be a bijective continuous map on the set of positive real numbers and let $g: (0, \infty) \to \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$ For $0 \in K(H)$ let T(f, g)(0) = 0.

If $0 \neq A = \sum_{\alpha>0} \alpha V_{\alpha} \in K(H)$ is Penrose decomposition (V_{α} is partial isometry $\forall \alpha \& V_{\alpha}V_{\beta}^* = V_{\alpha}^*V_{\beta} = 0$ for $\alpha \neq \beta$), let

$$T(f,g)(A) = \sum_{\alpha>0} f(\alpha)g(\alpha)V_{\alpha}.$$

Then T(f,g) is bijective, non-additive and preserves the star order in both directions.

Definition. Let $A, B \in B(H)$. Then $A \stackrel{\sharp}{\leq} B$, if A = B or \exists idempotent $P \in B(H)$:

 $\overline{\operatorname{Im} A} = \operatorname{Im} P$, $\operatorname{Ker} A = \operatorname{Ker} P$, PA = PB, AP = BP

Lemma: Let $A, B \in B(H)$, $A \stackrel{\sharp}{\leq} B$. Then $A \stackrel{\bar{\leq}}{\leq} B$.

Theorem: Let $T: B(H) \to B(H)$ — bijective and additive, strictly monotone wrt $\stackrel{\sharp}{<}$. Then $\exists \ 0 \neq \alpha \in \mathbb{F}$, $S: H \to H$ — linear or semi-linear invertible bounded: $T(A) = \alpha SAS^{-1} \forall A \in B(H)$ or $T(A) = \alpha SA^*S^{-1} \forall A \in B(H)$. One small note to the proof...

$(PAQ)^{\sharp} =$ $= PA(AA^{\sharp}QPA + I - AA^{\sharp})^{-2}Q$

instead of

 $(PAQ)^* = Q^*A^*P^*$