## Tropical Representations of Plactic Monoids

#### Mark Kambites

University of Manchester

(mostly) joint with Marianne Johnson

SandGAL, Cremona, 13 June 2019

### Definition

$$\mathbb{T} \ = \ \mathbb{R} \cup \{-\infty\}$$

### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

### Binary operations:

### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$ 

### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y$ 

#### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

#### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

 $\mathbb{T}$  is an idempotent semifield:

•  $(\mathbb{T}, \oplus)$  is a commutative monoid with identity  $-\infty$ ;

### **Definition**

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

- ullet  $(\mathbb{T},\oplus)$  is a commutative monoid with identity  $-\infty$ ;
- $-\infty$  is a zero element for  $\otimes$ ;

#### **Definition**

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

- $(\mathbb{T},\oplus)$  is a commutative monoid with identity  $-\infty$ ;
- $-\infty$  is a zero element for  $\otimes$ ;
- $(\mathbb{T} \setminus \{-\infty\}, \otimes)$  is an abelian group with identity 0;

### **Definition**

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

- ullet  $(\mathbb{T},\oplus)$  is a commutative monoid with identity  $-\infty$ ;
- $-\infty$  is a zero element for  $\otimes$ ;
- $(\mathbb{T}\setminus\{-\infty\},\otimes)$  is an abelian group with identity 0;
- $\bullet \otimes distributes over \oplus;$

### Definition

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

- $(\mathbb{T}, \oplus)$  is a commutative monoid with identity  $-\infty$ ;
- $\bullet$   $-\infty$  is a zero element for  $\otimes$ :
- $(\mathbb{T} \setminus \{-\infty\}, \otimes)$  is an abelian group with identity 0;
- ⊗ distributes over ⊕:
- $\bullet x \oplus x = x$

### **Definition**

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

Binary operations:  $x \oplus y = \max(x, y)$  and  $x \otimes y = x + y \ (= "xy")$ .

### **Properties**

#### $\mathbb{T}$ is an idempotent semifield:

- $(\mathbb{T},\oplus)$  is a commutative monoid with identity  $-\infty$ ;
- $-\infty$  is a zero element for  $\otimes$ ;
- $(\mathbb{T} \setminus \{-\infty\}, \otimes)$  is an abelian group with identity 0;
- ⊗ distributes over ⊕;
- $\bullet x \oplus x = x$

In fact  $x \oplus y$  is either x or y.

#### **Definition**

**Tropical algebra** or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

#### **Definition**

**Tropical algebra** or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

#### **Definition**

**Tropical algebra** or **max-plus algebra** is linear algebra where the base field is replaced by the tropical semiring.

#### **Definition**

**Tropical geometry** is (roughly!) algebraic geometry where the base field is replaced by the tropical semiring.

Tropical methods have applications in . . .

Tropical methods have applications in ...

• Combinatorial Optimisation

Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems

Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory

Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata

Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics

### Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference

#### Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory

#### Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry

### Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

### Tropical methods have applications in . . .

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory

#### Tropical methods have applications in ...

- Combinatorial Optimisation
- Discrete Event Systems
- Control Theory
- Formal Languages and Automata
- Phylogenetics
- Statistical Inference
- Geometric Group Theory
- (Mostly Enumerative) Algebraic Geometry
- Semigroup Theory (carrier for representations)

#### **Definition**

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

#### **Definition**

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

ullet Studied implicitly for 50+ years with many interesting specific results

#### Definition

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

 Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).

#### Definition

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

#### Definition

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### Definition

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

#### Definition

 $M_n(\mathbb{T})$  is the semigroup of  $n \times n$  matrices over  $\mathbb{T}$ , under the natural matrix multiplication induced by  $\oplus$  and  $\otimes$ .

#### **Definition**

 $UT_n(\mathbb{T})$  is the subsemigroup of upper triangular matrices.

- Studied implicitly for 50+ years with many interesting specific results (e.g. Gaubert, Cohen-Gaubert-Quadrat, d'Alessandro-Pasku).
- Since about 2008, systematic structural study using the tools of semigroup theory (Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

#### Philosophy

The algebra of  $M_n(\mathbb{T})$  mirrors the geometry of **tropical convex sets**.

## Semigroup Identities

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

### Semigroup Identities

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in  $\Sigma$ .)

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in  $\Sigma$ .)

For example, a semigroup satisfies . . .

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in  $\Sigma$ .)

For example, a semigroup satisfies . . .

• ... AB = BA if and only if it is commutative;

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in  $\Sigma$ .)

For example, a semigroup satisfies . . .

- ... AB = BA if and only if it is commutative;
- ...  $A^2 = A$  if and only if it is idempotent;

A **semigroup identity** is a pair of non-empty words, usually written u = v over some alphabet  $\Sigma$ .

A semigroup S satisfies the identity u = v if every morphism from the free semigroup  $\Sigma^+$  to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every substitution of elements in S for the letters in  $\Sigma$ .)

For example, a semigroup satisfies . . .

- ... AB = BA if and only if it is commutative;
- ...  $A^2 = A$  if and only if it is idempotent;
- ... AB = A if and only if it is a left-zero semigroup.

Theorem (Izhakian & Margolis 2010)

 $UT_2(\mathbb{T})$  and consequently  $M_2(\mathbb{T})$  satisfy (non-trivial) semigroup identities.

Theorem (Izhakian & Margolis 2010)

 $UT_2(\mathbb{T})$  and consequently  $M_2(\mathbb{T})$  satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$  satisfies a semigroup identity for every n.

## Theorem (Izhakian & Margolis 2010)

 $UT_2(\mathbb{T})$  and consequently  $M_2(\mathbb{T})$  satisfy (non-trivial) semigroup identities.

# Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$  satisfies a semigroup identity for every n.

## Theorem (Daviaud, Johnson & K. 2018)

- $UT_2(\mathbb{T})$  satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in  $UT_n(\mathbb{T})$ .

# Theorem (Izhakian & Margolis 2010)

 $UT_2(\mathbb{T})$  and consequently  $M_2(\mathbb{T})$  satisfy (non-trivial) semigroup identities.

# Theorem (Izhakian 2013-16, Okniński 2015, Taylor 2016)

 $UT_n(\mathbb{T})$  satisfies a semigroup identity for every n.

## Theorem (Daviaud, Johnson & K. 2018)

- $UT_2(\mathbb{T})$  satisfies exactly the same identities as the bicyclic monoid.
- For each n there is an efficient algorithm to check whether a given identity is satisfied in  $UT_n(\mathbb{T})$ .

## Theorem (Izhakian & Merlet 2018, building on ideas of Shitov)

 $M_n(\mathbb{T})$  satisfies a semigroup identity for every n.

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ?

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

## Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

## Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

## Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

## Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

## Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

## Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

## Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

Is there a natural concrete realisation of the free objects in the variety generated by  $UT_n(\mathbb{T})$ ? (In particular, in the bicyclic variety?)

## Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical polynomials.

## Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings (including fields?!?).

See arXiv:1904.06094 for more details.

The **plactic monoid**  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \dots, n\}$  (= [n]) subject to the **Knuth relations**:

The **plactic monoid**  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \ldots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$

The **plactic monoid**  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \ldots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

The plactic monoid  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \dots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

| 4 | 4 |   |   |
|---|---|---|---|
| 2 | 3 | 4 |   |
| 1 | 2 | 3 | 3 |

The plactic monoid  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \dots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

| 4 | 4 |   |   |             |
|---|---|---|---|-------------|
| 2 | 3 | 4 |   | = 442341233 |
| 1 | 2 | 3 | 3 |             |

The plactic monoid  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \dots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

| 4 | 4 |   |   |                         |
|---|---|---|---|-------------------------|
| 2 | 3 | 4 |   | = 442341233 = 421432433 |
| 1 | 2 | 3 | 3 |                         |

The **plactic monoid**  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \ldots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

| 4 | 4 |   |   |                                              |
|---|---|---|---|----------------------------------------------|
| 2 | 3 | 4 |   | $= \ 442341233 \ = \ 421432433 \ = \ \cdots$ |
| 1 | 2 | 3 | 3 |                                              |

The plactic monoid  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \dots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

| 4 | 4 |   |   |                                              |
|---|---|---|---|----------------------------------------------|
| 2 | 3 | 4 |   | $= \ 442341233 \ = \ 421432433 \ = \ \cdots$ |
| 1 | 2 | 3 | 3 |                                              |

The **plactic monoid**  $\mathbb{P}_n$  of rank n is the monoid generated by  $\{1, 2, \ldots, n\}$  (= [n]) subject to the **Knuth relations**:

$$bca = bac \ (a < b \le c)$$
  $acb = cab \ (a \le b < c)$ 

Elements are in bijective correspondence (via row reading or column reading) with **semistandard Young tableaux** over [n]:

(Entries in each column strictly decreasing, entries in each row weakly increasing, row lengths weakly increasing.)

• ... were (probably) discovered by Knuth (1970).

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ... are  $\mathcal{J}$ -trivial.

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ullet . . . are  ${\mathcal J}$ -trivial.
- ... have polynomial growth of degree  $\frac{n(n+1)}{2}$ .

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ullet . . . are  $\mathcal{J}$ -trivial.
- ... have polynomial growth of degree  $\frac{n(n+1)}{2}$ .
- ...admit finite complete rewriting systems and biautomatic structures (Cain, Gray & Malheiro 2015).

- ... were (probably) discovered by Knuth (1970).
- ... were named ("plaxique") and extensively studied by Lascoux and Schützenberger (1981).
- ... (and their algebras) have many applications in algebraic combinatorics and representation theory.
- ullet . . . are  ${\mathcal J}$ -trivial.
- ... have polynomial growth of degree  $\frac{n(n+1)}{2}$ .
- ...admit finite complete rewriting systems and biautomatic structures (Cain, Gray & Malheiro 2015).

**Schensted's algorithm** (1961) constructs tableaux from words.

# Identities for plactic monoids

### Question

Does  $\mathbb{P}_n$  satisfy a semigroup identity?

# Identities for plactic monoids

### Question

Does  $\mathbb{P}_n$  satisfy a semigroup identity?

• "Yes" when  $n \le 3$  (Kubat & Okniński 2013)

#### Question

- "Yes" when  $n \leq 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)

#### Question

Does  $\mathbb{P}_n$  satisfy a semigroup identity?

- "Yes" when  $n \le 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)

#### Question

- "Yes" when  $n \leq 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)

#### Question

- "Yes" when  $n \leq 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids

#### Question

- "Yes" when  $n \le 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)

#### Question

- "Yes" when  $n \leq 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)

#### Question

- "Yes" when  $n \le 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite n (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)
- Again conjectured "yes" for all finite n (Cain & Malheiro 2018)

#### Question

- "Yes" when  $n \le 3$  (Kubat & Okniński 2013)
- Corresponding answer is "yes" for Chinese monoids (consequence of Jaszuńska and Okniński 2011)
- Conjectured "yes" for all finite *n* (Kubat & Okniński 2013)
- "No" when *n* infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
- Corresponding answer is "yes" for right patience sorting (= Bell) monoids and "no" for left patience sorting monoids (Cain, Malheiro & F. M. Silva 2018)
- Corresponding answer is "yes" for hypoplactic, sylvester, Baxter, stalactic and taiga monoids (Cain & Malheiro 2018)
- Again conjectured "yes" for all finite n (Cain & Malheiro 2018)
- Recent preprint of Okniński on  $n \ge 4$  withdrawn.



The plactic monoid  $\mathbb{P}_3$  has a faithful representation in  $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$ .

The plactic monoid  $\mathbb{P}_3$  has a faithful representation in  $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$ .

## Question (Izhakian 2017)

Does each  $\mathbb{P}_n$  have a faithful representation by tropical matrices?

The plactic monoid  $\mathbb{P}_3$  has a faithful representation in  $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$ .

## Question (Izhakian 2017)

Does each  $\mathbb{P}_n$  have a faithful representation by tropical matrices?

#### Remark

If "yes" then  $\mathbb{P}_n$  satisfies a semigroup identity.

The plactic monoid  $\mathbb{P}_3$  has a faithful representation in  $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$ .

## Question (Izhakian 2017)

Does each  $\mathbb{P}_n$  have a faithful representation by tropical matrices?

#### Remark

If "yes" then  $\mathbb{P}_n$  satisfies a semigroup identity.

Cain, Klein, Kubat, Malheiro & Okniński 2017

Alternative faithful representation for  $\mathbb{P}_3$ .

The plactic monoid  $\mathbb{P}_3$  has a faithful representation in  $UT_3(\mathbb{T}) \times UT_3(\mathbb{T})$ .

## Question (Izhakian 2017)

Does each  $\mathbb{P}_n$  have a faithful representation by tropical matrices?

#### Remark

If "yes" then  $\mathbb{P}_n$  satisfies a semigroup identity.

### Cain, Klein, Kubat, Malheiro & Okniński 2017

Alternative faithful representation for  $\mathbb{P}_3$ .

Both the above representations generalise naturally to higher rank but do **not** remain faithful. e.g. in  $\mathbb{P}_4$  they do not separate:

| 4 | 4 |   |   |  |
|---|---|---|---|--|
| 2 | 3 | 4 |   |  |
| 1 | 2 | 3 | 3 |  |

and

| 4 |   |   |   |
|---|---|---|---|
| 2 | 3 | 4 | 4 |
| 1 | 2 | 3 | 3 |

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

### Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

## Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$ 

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

## Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$  but . . .

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

### Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$  but ...

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

 $\mathbb{P}_n$  satisfies all identities satisfied by  $UT_d(\mathbb{T})$  where  $d=\lfloor rac{n^2}{A}+1 
floor$ 

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

### Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$  but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

 $\mathbb{P}_n$  satisfies all identities satisfied by  $UT_d(\mathbb{T})$  where  $d=\lfloor rac{n^2}{4}+1 
floor$ 

$$(n=3 \implies d=3,$$

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

### Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$  but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

 $\mathbb{P}_n$  satisfies all identities satisfied by  $UT_d(\mathbb{T})$  where  $d=\lfloor rac{n^2}{4}+1 
floor$ 

$$(n=3 \implies d=3, \quad n=4 \implies d=5,$$

For every finite n,  $\mathbb{P}_n$  has a faithful representation in some  $UT_k(\mathbb{T})$ .

### Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order  $2^n$  but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

 $\mathbb{P}_n$  satisfies all identities satisfied by  $UT_d(\mathbb{T})$  where  $d=\lfloor rac{n^2}{4}+1 
floor$ 

$$(n=3 \implies d=3, \quad n=4 \implies d=5, \quad n=5 \implies d=7)$$

• For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define  $S \leq T$  if |S| = |T| and column S can appear left of column T.

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define  $S \leq T$  if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

| 3 |        | 4 |        | 4 |          | 4 |
|---|--------|---|--------|---|----------|---|
| 2 | $\leq$ | 2 | $\leq$ | 3 | <u> </u> | 3 |
| 1 |        | 1 |        | 1 |          | 2 |

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define  $S \leq T$  if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

$$\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix} \le \begin{bmatrix}
4 \\
2 \\
1
\end{bmatrix} \le \begin{bmatrix}
4 \\
3 \\
1
\end{bmatrix} \le \begin{bmatrix}
4 \\
3 \\
2
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
1
\end{bmatrix} \le \begin{bmatrix}
3 \\
1
\end{bmatrix} \le \begin{bmatrix}
4 \\
1
\end{bmatrix}, \begin{bmatrix}
3 \\
2
\end{bmatrix} \le \begin{bmatrix}
4 \\
2
\end{bmatrix} \le \begin{bmatrix}
4 \\
3
\end{bmatrix}$$

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define  $S \leq T$  if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

- For  $\mathbb{P}_n$  we will build  $2^{[n]} \times 2^{[n]}$  matrices.
- Think of subsets as possible columns of semistandard Young tableaux.
- Define  $S \leq T$  if |S| = |T| and column S can appear left of column T.
- For example, with n = 4:

#### Remark

"d" from the previous slide is the longest chain length in this partial order.

$$\rho(x)_{P,Q} = \left\{\right.$$

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ \end{cases}$$

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \end{cases}$$

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

 Choose an order of rows and columns such that these matrices are upper triangular

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

 Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism  $\rho: [n]^* \to UT_{2^n}(\mathbb{T})$ .

• For  $x \in [n]$  define a  $2^{[n]} \times 2^{[n]}$  tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism  $\rho: [n]^* \to UT_{2^n}(\mathbb{T})$ .

#### Lemma

The map  $\rho$  respects the Knuth relations

• For  $x \in [n]$  define a  $2^{[n]} \times 2^{[n]}$  tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism  $\rho: [n]^* \to UT_{2^n}(\mathbb{T})$ .

#### Lemma

The map  $\rho$  respects the Knuth relations and therefore induces a morphism

$$\rho_n: \mathbb{P}_n \to UT_{2^n}(\mathbb{T}).$$

• For  $x \in [n]$  define a  $2^{[n]} \times 2^{[n]}$  tropical matrix by

$$\rho(x)_{P,Q} = \begin{cases} -\infty & \text{if } P \nleq Q \\ 1 & \text{if } \exists T \subseteq [n] \text{ with } P \leq T \leq Q \text{ and } x \in T \\ 0 & \text{otherwise.} \end{cases}$$

- Choose an order of rows and columns such that these matrices are upper triangular (by extending ≤ to a linear order).
- Extend to a morphism  $\rho: [n]^* \to UT_{2^n}(\mathbb{T})$ .

#### Lemma

The map ho respects the Knuth relations and therefore induces a morphism

$$\rho_n: \mathbb{P}_n \to UT_{2^n}(\mathbb{T}).$$

### The Thing You Expect Me To Say

The map  $\rho_n : \mathbb{P}_n \to UT_{2^n}(\mathbb{T})$  is a faithful representation of  $\mathbb{P}_n$ .

MANCHESTER

Then each  $\pi_{n\to i}$  is a morphism

Then each  $\pi_{n\rightarrow i}$  is a morphism and the direct sum map ...

$$\prod_{i=1}^n \rho_i \circ \pi_{n \to i} : \mathbb{P}_n \to \prod_{i=1}^n UT_{2^i}(\mathbb{T})$$

. . .

Then each  $\pi_{n \to i}$  is a morphism and the direct sum map . . .

$$\prod_{i=1}^n \rho_i \circ \pi_{n \to i} : \mathbb{P}_n \to \prod_{i=1}^n UT_{2^i}(\mathbb{T})$$

... gives a faithful representation of  $\mathbb{P}_n$  in  $UT_{2^{n+1}-1}(\mathbb{T})$ .

Then each  $\pi_{n \to i}$  is a morphism and the direct sum map . . .

$$\prod_{i=1}^n \rho_i \circ \pi_{n \to i} : \mathbb{P}_n \to \prod_{i=1}^n UT_{2^i}(\mathbb{T})$$

... gives a faithful representation of  $\mathbb{P}_n$  in  $UT_{2^{n+1}-1}(\mathbb{T})$ .

#### Definition

• Let  $\leq$  be a partial order on [n].

#### **Definition**

- Let  $\leq$  be a partial order on [n].
- Let *d* be the length of the longest chain.

#### **Definition**

- Let  $\leq$  be a partial order on [n].
- Let *d* be the length of the longest chain.
- Consider the set of all matrices in  $M_n(\mathbb{T})$  such that  $i \not\leq j \implies M_{i,j} = -\infty$ .

#### Definition

- Let  $\leq$  be a partial order on [n].
- Let *d* be the length of the longest chain.
- Consider the set of all matrices in  $M_n(\mathbb{T})$  such that  $i \leq j \implies M_{i,j} = -\infty$ .
- This is a subsemigroup of  $M_n(\mathbb{T})$ , called a **chain-structured tropical** matrix semigroup of chain length d.

#### Definition

- Let  $\leq$  be a partial order on [n].
- Let *d* be the length of the longest chain.
- Consider the set of all matrices in  $M_n(\mathbb{T})$  such that  $i \not\leq j \implies M_{i,j} = -\infty$ .
- This is a subsemigroup of  $M_n(\mathbb{T})$ , called a **chain-structured tropical** matrix semigroup of chain length d.

### Theorem (Daviaud, Johnson & K. 2018)

Any chain-structured tropical matrix semigroup of chain length d satisfies the same identities as  $UT_d(\mathbb{T})$ .

### Further details

• M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991

MANCHESTER

### Further details

- M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991
- M. Kambites, Free objects in triangular matrix varieties and quiver algebras over semirings, arXiv:1904.06094

### Further details

- M. Johnson & M. Kambites, Tropical representations of plactic monoids, arXiv:1906.03991
- M. Kambites, Free objects in triangular matrix varieties and quiver algebras over semirings, arXiv:1904.06094
- L. Daviaud, M. Johnson & M. Kambites, Identities in upper triangular tropical matrix semigroups and the bicyclic monoid, J. Algebra Vol.501 pp.503–525 (2018).