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Commuting probability

Let S be a finite set with operation ◦. Then

cp(S) = |{(x , y) ∈ S2 | x ◦ y = y ◦ x}|
|S|2

is the probability that a randomly chosen pair of elements in S
commutes under ◦.

Question
If (S, ◦) is non-commutative, how large can cp(S) be?
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Commuting probability in semigroups and quasigroups
Semigroups are not exciting; cp(S) can get arbitrarily close to 1.

Example (MacHale, 1990)
Let n ≥ 4, Tn = {a1, a2, . . . , an}, and define

ai ◦ aj =
{

a2 : i = j + 1
a1 : otherwise .

Then Tn is a semigroup with

cp(Tn) = 1− 2/n2.

if S is a non-commutative quasigroup, then cp(S) can get arbitrarily
close to 1 (S. M. Buckley, preprint).



Commuting probability in semigroups and quasigroups
Semigroups are not exciting; cp(S) can get arbitrarily close to 1.

Example (MacHale, 1990)
Let n ≥ 4, Tn = {a1, a2, . . . , an}, and define

ai ◦ aj =
{

a2 : i = j + 1
a1 : otherwise .

Then Tn is a semigroup with

cp(Tn) = 1− 2/n2.

if S is a non-commutative quasigroup, then cp(S) can get arbitrarily
close to 1 (S. M. Buckley, preprint).



Commuting probability in groups
Erdös and Turan’s description of cp(G)

Proposition (Hirsch, 1950; Erdös, Turan, 1968)
Let k(G) be the number of conjugacy classes in G. Then

cp(G) = k(G)/|G |.

Proof.
Let x1, x2, . . . , xk be the representatives of conjugacy classes of G .

cp(G) = (1/|G |2)
∑
x∈G
|CG(x)|

= (1/|G |2)
k∑

i=1
|CG(xi)| · |G : CG(xi)|

= k(G)/|G |.
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Commuting probability in groups
Probability gap

Theorem (Gustafson, 1973)
Let G be a finite non-abelian group. Then cp(G) ≤ 5/8.

Proof.
Class equation:

|G | = |Z (G)|+
k(G)−|Z(G)|∑

i=1
|G : CG(xi)|

≥ |Z (G)|+ 2(k(G)− |Z (G)|).

Divide by |G | and note that |G : Z (G)| ≥ 4. We get the bound.

There are a lot of further results on the commuting probability of
groups, see e.g. Guralnick, Robinson (2006).
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Word maps
Let Fd be a free group on {x1, x2, . . . , xd}. Let w = w(x1, x2, . . . xd)
be a word in Fd .

If G is a group, then the map

w : Gd → G
(g1, g2, . . . , gd) 7→ w(g1, g2, . . . , gd)

is the word map associated to the word w .

Definition
Let w = w(x1, x2, . . . , xd) be a word in a free group. A group G is
said to satisfy the identity w ≡ 1 if

w(g1, g2, . . . , gd) = 1

for all g1, g2, . . . , gd ∈ G .
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Word probabilities
Generalization of the commuting probability

Let w be a word in a free group of rank d , and G a finite group. Fix
g ∈ G . Then

Pw=g(G) = |w
−1(g)|
|G |d

is the probability that a randomly chosen d-tuple of elements of G
evaluates to g under the word map w .

Usually we consider the case g = 1.

Notation: Pw (G) = Pw=1(G).

Example
cp(G) = P[x ,y ](G).
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Two open problems

Question (Probability Gap Problem; Dixon, 2004)
Let w be a word. Does there exist η = η(w) < 1 such that every
finite group G either satisfies w ≡ 1 or Pw (G) ≤ η?

Question (Positive Probability Problem; Shalev, 2016)
Let w be a word and ε > 0. Does there exist a word v = v(w , ε)
such that every finite group G with Pw (G) > ε satisfies v ≡ 1?
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Example: Commuting probability
Positive Probability problem for commuting probability

Theorem (P. M. Neumann, 1989)
Let ε > 0 and let G be a finite group with cp(G) > ε. Then there
exist subgroups N / H / G such that

H/N is abelian,
both |N| and |G : H| are bounded by some function of ε.

We also say that G is (ε-bounded)-by-abelian-by-(ε-bounded).

Under the above conditions, there exist integers m = m(ε) and
n = n(ε) such that G satisfies the identity

[xm, ym]n ≡ 1.
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Power words
Known results on the Probability Gap Problem and Positive Probability Problem

Let G be a finite group.
If Px (G) > 1/2, then G is trivial.

If Px2(G) > 3/4, then G satisfies the law x2 ≡ 1 (Miller, 1920).
If Px3(G) > 7/9, then G satisfies the law x3 ≡ 1 (Laffey, 1976).
For each k and d , there exists a number 0 < p(d , k) < 1, such
that if d(G) ≤ d and Pxk (G) > p(d , k), then G satisfies the
law xk ≡ 1 (Mann and Martinez, 1996).
Let ε > 0 and Px2=a(G) > ε for some a ∈ G . Then G is
(ε-bounded)-by-abelian-by-(ε-bounded). (Mann, 2018).
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Two particular words

Metabelian word: w(x1, x2, x3, x4) = [[x1, x2], [x3, x4]].

2-Engel word: w(x , y) = [[x , y ], y ].

Theorem
Let w be either the 2-Engel or the metabelian word. There exists a
constant δ < 1 such that whenever w is not an identity in a finite
group G, we have Pw (G) ≤ δ.

The proof strategy outlined here can be (in principle) applied to
other words as well.
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A general approach
Projection on the first coordinate; mimic the abelian case.

We may write

Pw (G) = 1
|G |d

∑
g2,...,gd∈G

|{g1 ∈ G | w(g1, . . . , gd) = 1}|.

Denote

Cw (g2, . . . , gd) = {g1 ∈ G | w(g1, . . . , gd) = 1}.

Caution: Cw (g2, . . . , gd) is rarely a subgroup in G .
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A general approach
The GOOD and the BAD.

Suppose we define a set BAD ⊆ Gd−1 with the property that there
exist absolute constants 0 < δGOOD, δBAD < 1, depending only on w
and not on G , such that:

1 ∀(g2, . . . , gd) ∈ GOOD. |Cw (g2, . . . , gd)| ≤ δGOOD · |G |
2 |BAD| ≤ δBAD · |G |d−1,

where GOOD = Gd−1 \ BAD.

Then, summing over BAD and GOOD separately, we quickly obtain

Pw (G) ≤ δGOOD + (1− δGOOD)δBAD,

which gives an absolute upper bound on the word probability in G .



A general approach
The GOOD and the BAD.

Suppose we define a set BAD ⊆ Gd−1 with the property that there
exist absolute constants 0 < δGOOD, δBAD < 1, depending only on w
and not on G , such that:

1 ∀(g2, . . . , gd) ∈ GOOD. |Cw (g2, . . . , gd)| ≤ δGOOD · |G |
2 |BAD| ≤ δBAD · |G |d−1,

where GOOD = Gd−1 \ BAD.

Then, summing over BAD and GOOD separately, we quickly obtain

Pw (G) ≤ δGOOD + (1− δGOOD)δBAD,

which gives an absolute upper bound on the word probability in G .



Sample application: the long commutator

Consider the long commutator word,

γd(x1, . . . , xd) = [x1, γd−1(x2, . . . , xd)] = [x1, [x2, [. . . , xd ]]].

We know that in a non-abelian group G , Pγ2(G) ≤ 5
8 .

Theorem
Let G be a finite group not satisfying the law γd ≡ 1. Then

Pγd (G) ≤ 1− 3
2d+1 .

The bound is sharp.
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Proof of Pγd (G) ≤ 1− 3
2d+1

γd(x1, . . . , xd) = [x1, γd−1(x2, . . . , xd)]
Induction on d . Let G be a group that does not satisfy the law
γd ≡ 1. Set

BAD = {(g2, . . . , gd) ∈ Gd−1 | Cγd (g2, . . . , gd) = G}
= {(g2, . . . , gd) ∈ Gd−1 | γd−1(g2, . . . , gd) ∈ Z (G)}.

The size of the latter set is

|BAD| = |{(g2, . . . , gd) ∈ (G/Z (G))d−1 | γd−1(g2, . . . , gd) = 1}|
· |Z (G)|d−1.

G/Z (G) does not satisfy the law γd−1 ≡ 1. By induction there is a
constant δd−1 with

|{(g2, . . . , gd) ∈ (G/Z (G))d−1 | γd−1(g2, . . . , gd) = 1}| ≤ δd−1|G/Z (G)|d−1.
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If (g2, . . . , gd) /∈ BAD, we have

Cγd (g2, . . . , gd) = CG(γd−1(g2, . . . , gd)),

which is a proper subgroup of G , and therefore

|Cγd (g2, . . . , gd)| ≤ 1
2 |G |.

Therefore we can take δGOOD = 1
2 .

This gives a bound for the probability,

Pγd (G) ≤ 1
2 + 1

2δd−1 =: δd .

Since δ2 = 5
8 , we get δd = 1− 3

2d+1 .
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Central extension of a word with gap
The same argument works more generally.

Proposition
Let w be a word in d variables, and suppose that there exists
η = η(w) < 1 such that whenever G is a finite group with
Pw (G) > η, then G satisfies the identity w ≡ 1.

Let
w̃(x1, x2, . . . , xd+1) = [x1,w(x2, . . . , xd)].

Then every finite group G satisfies either w̃ ≡ 1 or

Pw̃ (G) ≤ 1
2 + 1

2η(w).
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The words w = [[x1, x2], [x3, x4]] and w = [x , y , y ]
The naive approach works only in special cases.

For these two words, the approach using projection on a given
coordinate works only under extra assumptions on the structure of G
(will be elaborated later).

Alternative strategy is to consider ’minimal counterexamples’ and
separate the non-solvable case from the solvable case.

It turns out that the non-solvable case can be taken care of using
results on word values in simple groups obtained by Bors, Larsen,
and Shalev. The solvable case is more ad hoc.
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The chief series of a group

Definition
Let G be a finite group. A chief series of G is a chain of normal
subgroups of G

1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nn = G ,

such that each Ni+1/Ni is a minimal normal subgroup of G/Ni .

Each chief factor Ni+1/Ni is isomorphic to a direct product of
isomorphic finite simple groups:

Ni+1/Ni ∼= T k ,

where T is a finite simple group.
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First case: non-abelian composition factor
Reduction

Lemma
Let w be a nontrivial word. Let G be a finite group and N a normal
subgroup of G. Then Pw=g(G) ≤ Pw=gN(G/N) for every g ∈ G.

Consider a chief factor N2/N1 = T k of G , where T is a simple
group and k ≥ 1. Suppose that T is non-abelian.

In this case, T does not satisfy the identity w ≡ 1 (at least in the
2-Engel or metabelian case).

For the purposes of our claim, we can replace G by its quotient
G/CG(N2/N1) and therefore assume that

T k ≤ G ≤ Aut(T k).
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First case: non-abelian composition factor
T k ≤ G ≤ Aut(T k). When T is large, all is OK

Theorem (Larsen, Shalev, 2017)

Let G be a finite group such that T k ≤ G ≤ Aut(T k) for some
k ≥ 1 and a finite nonabelian simple group T . Suppose w is a
nontrivial word. Then there exist constants C = C(w),
ε = ε(w) > 0 depending only on w such that, if |T | ≥ C, then for
any g ∈ G we have Pw=g(G) ≤ |T k |−ε.

As long as |T | > C , we therefore have Pw (G) < C−ε.
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First case: non-abelian composition factor
T k ≤ G ≤ Aut(T k). When T is small, its multiplicity k may be large

We have
T k ≤ G ≤ AutT k .

If |T | and k are bounded, then the order of |G | is bounded and thus
the probability Pw (G) is bounded.

Potential problem: k may not be bounded when T is small.
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First case: non-abelian composition factor
Multiplicity bounding words

Definition (Bors, 2017)
A reduced word w is called multiplicity bounding if, whenever G is
a finite group such that Pw=g(G) > ρ for some g ∈ G , the
multiplicity of a non-abelian simple group T as a composition factor
of G can be bounded above by a function of only ρ and T .

Proposition
Let w ∈ Fd be a multiplicity bounding word. Then there exists a
constant δ = δ(w) < 1 such that every nonsolvable finite group G
satisfies Pw (G) ≤ δ.

Theorem
Both the metabelian and 2-Engel word are multiplicity bounding.
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Second case: solvable groups
Verbal subgroup

If all the chief factors of G are abelian, then G is solvable.

The verbal subgroup: V = 〈w(Gd)〉.

We may assume that all proper quotients of G satisfy w ≡ 1,
therefore V can be assumed to be the unique minimal normal
subgroup of G , and so

V = Fn
p.
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The metabelian and 2-Engel words
The projection to the first coordinate works sometimes.

We need a set BAD ⊆ Gd−1 and constants 0 < δGOOD, δBAD < 1,
depending only on w and not on G , such that:

1 ∀(g2, . . . , gd) ∈ GOOD. |Cw (g2, . . . , gd)| ≤ δGOOD · |G |
2 |BAD| ≤ δBAD · |G |d−1,

where GOOD = Gd−1 \ BAD.

In our case, this can be done in the following cases:
w = [[x1, x2], [x3, x4]]: G ′ acts trivially on V .
w = [x , y , y ]: G acts trivially on V .
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Solvable groups: Non-trivial action
General principle: GOOD and BAD representatives

Let R be a set of coset representatives for V in G . Then

Pw (G) = 1
|G |d

∑
ai∈V ,ri∈R

1w(a1r1,...,ad rd )=1.

Each summand can be expanded as

w(a1r1, . . . , ad rd) =
d∏

i=1
awi (r1,...,rd )

i · w(r1, . . . , rd)

for some endomorphisms wi(r1, . . . , rd) ∈ End(V ).
Set

BAD = {(r1, . . . , rd) ∈ Rd | ∀i . wi(r1, . . . , rd) = 0End(V )},
GOOD = Rd − BAD.
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above is independent of the values ai ∈ V .
By first summing over the bad representatives, we have

1
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∑
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|V |d · 1w(r1,...,rd )=1 ≤
|BAD|
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Summation over the good representatives
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1
|G |d

∑
(r1,...,rd )∈GOOD

∑
ai∈V

1w(a1r1,...,ad rd )=1 ≤
1
|G |d

∑
(r1,...,rd )∈GOOD

|V |d−1(|V |/p)

= |GOOD|
p|R|d



Solvable groups: Non-trivial action
Summation over the good representatives

w(a1r1, . . . , ad rd) =
d∏

i=1
awi (r1,...,rd )

i · w(r1, . . . , rd),

GOOD = {(r1, . . . , rd) ∈ Rd | ∃i . wi(r1, . . . , rd) 6= 0End(V )},

If (r1, . . . , rd) ∈ GOOD, then there is j such that

|CV (wj(r1, . . . , rd))| ≤ |V |/p.

Summing over the good representatives, we have

1
|G |d

∑
(r1,...,rd )∈GOOD

∑
ai∈V

1w(a1r1,...,ad rd )=1 ≤
1
|G |d

∑
(r1,...,rd )∈GOOD

|V |d−1(|V |/p)

= |GOOD|
p|R|d



Solvable groups: Non-trivial action
Summation over the good representatives

w(a1r1, . . . , ad rd) =
d∏

i=1
awi (r1,...,rd )

i · w(r1, . . . , rd),

GOOD = {(r1, . . . , rd) ∈ Rd | ∃i . wi(r1, . . . , rd) 6= 0End(V )},

If (r1, . . . , rd) ∈ GOOD, then there is j such that

|CV (wj(r1, . . . , rd))| ≤ |V |/p.

Summing over the good representatives, we have

1
|G |d

∑
(r1,...,rd )∈GOOD

∑
ai∈V

1w(a1r1,...,ad rd )=1 ≤
1
|G |d

∑
(r1,...,rd )∈GOOD

|V |d−1(|V |/p)

= |GOOD|
p|R|d



Solvable groups: Non-trivial action
Putting BAD and GOOD together

We can collect the two upper bounds to finally obtain

Pw (G) ≤ |BAD|
|R|d

+ |GOOD|
p|R|d

= 1
p +

(
1− 1

p

) |BAD|
|R|d

≤ 1
2

(
1 + |BAD|
|R|d

)
.

In order to get a gap on word probability, we need to show that for a
given word w , there is a gap on the relative size of the set BAD
inside Rd .
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Solvable groups: Non-trivial action
Metabelian and 2-Engel words. Breaking BAD: the GOOD, the BAD and the UGLY

Pw (G) ≤ |BAD|
|R|d

+ |GOOD|
p|R|d ≤

1
2

(
1 + |BAD|
|R|d

)
.

The 2-Engel case is relatively straightforward; one can show that
|BAD|
|R|2

≤ 1
2 .

In the metabelian case we need to assume [G ,G ] acts non-trivially
on V , i.e., G ′ 6⊆ CG(V ). Define

UGLY = {(z , t) ∈ (G/V )2 | [z , t] ∈ CG(V )}.

Then we can show that
|BAD|
|R|4

≤ 1
2 + 1

2
|UGLY|
|R|2

and |UGLY|
|R|2

≤ 5
8 .
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