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This talk is devoted to a very classical class of groups: the surface

groups. These are fundamental groups of oriented closed

Riemannian surfaces Σg of genus g , g ≥ 2.

Surface groups are finitely presented:

Gg = 〈a1, ..., ag , b1, ..., bg |
g∏

i=1

[ai , bi ] = 1〉,

where [a, b] denotes the commutator aba−1b−1. 1



This is ”the standard” presentation of Gg that comes from the

Poincaré theorem, and we denote the standard (symmetric) system

of generators

Sg = {a±11 , ..., a±1g , b±11 , ..., b±1g } .

In the case of g = 1, the fundamental group of the torus is the free

abelian group of rank 2

G1 = 〈a, b | [a, b] = 1〉.

G1 is a cocompact lattice in the eucledian plane R2.
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For g ≥ 2, Σg has negative Euler characteristic, and Gg is a

cocompact lattice in the hyperbolic plane H2.
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Hence, the group Gg , g ≥ 2 is quasi-isometric to H2. In particular,

it is an example of a word hyperbolic group.

Recall that a geodesic metric space is hyperbolic if all its

triangles are thin, in the following sense: there is a (global)

constant δ ≥ 0 such that each edge of each triangle is contained in

the δ-neighbourhood of the union of the other two edges of the

triangle.

A finitely generated group is word hyperbolic (or Gromov

hyperbolic) if it has a Cayley graph which is hyperbolic.

Hyperbolicity is invariant under quasi-isometry. Cayley graphs with

respect to different finite generating sets are quasi-isometric, hence

the property of being hyperbolic does not depend of the choice of

a finite generating set in a group.

Z2 is not hyperbolic.
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Word hyperbolic groups and in particular surface groups are

examples of automatic groups.

Recall that a finitely generated group G given with a finite

generating set S is automatic if there exists a normal form G (i.e.

a language L ⊂ S∗ containing a unique representative of each

element of G ) which is regular, and such that two paths in the

Cayley graph Cay(G , S) corresponding to two elements in L and

representing elements of G at distance 1 in Cay(G , S) fellow-travel

(i.e. remain at distance bounded by a constant k > 0, the same for

all such pairs of paths).

Hyperbolic groups are automatic in a strong sense: the normal

form in the definition above can be chosen to be geodesic, that is

the length of a word in L coincides with the length of the element

it represents in G .

Recall that a language is regular if it is recognized by a finite state

automaton. 5



In his unpublished but influential 1980 paper ”The growth of the

closed surface groups and the compact hyperbolic Coxeter groups”

Jim Cannon introduced the following definition:

Definition

The cone of a vertex x in Cay(G ,S) is the (rooted) subgraph

spanned by the set of all vertices that can be connected to the

identity element by a geodesic passing through x .

Two vertices x and y are said to have the same cone type if

the graph automorphism taking x to y (given by the left

multiplication by x−1y in G ) takes the cone of x isomorphically

onto the cone of y . In other words, a cone type in a Cayley graph

Cay(G ,S) can be viewed as an orbit for the action of G on the

set of cones of vertices in Cay(G ,S).

Cones can be considered with edges labelled by elements of

S ∪ S−1. So we can talk about labelled or unlabelled cone types.
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Theorem

([EPCHLT ’92]) Any Cayley graph of any word hyperbolic group

has finitely many cone types.

Coxeter groups are also known to have finitely many cone types in

Cayley graphs with respect to Coxeter generators. In general, it is

now known if having finitely many cone types is a quasi-isometric

invariant; it may depend on the generating set.

Finitely many (labelled) cone types → a finite state automaton

of cone types, Act .

States of the automaton = cone types of vertices in Cay(G , S).

Directed edges = adjacency of cone types.

The automaton of labelled cone types recognizes the language of

geodesics associated with (G ,S).
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Here is a zoom-in on the Cayley graph Cay(G2,S2).

8



This graph is the 1-skeleton of the tesselation of H2 by regular

4g -gons. It is 4g -regular. It is planar self-dual. Hence there are 4g

faces meeting at each vertex.

Interestingly, the Cayley graph Cay(Gg , Sg ), g ≥ 2, is isomorphic

to the Cayley graph of a certain Coxeter group

C4g = 〈s1, ..., s4g | s2i = 1, (si si+1)2g = 1, 1 ≤ i ≤ 4g〉.

(See Bozejko, Dykema and Lehner ’06 for a combinatorial proof.)

Remark. There are 8g(2g − 1) + 1 labelled cone types in

Cay(Gg ,Sg ) given by all subwords in the (cyclically written) relator∏g
i=1[ai , bi ] and its inverse.

There are 2g + 1 unlabelled cone types, you can view them on one

side of a 4g -gon at e.
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Three applications of Act to the study of the group G

1. Growth. For a finitely generated group G with a finite system

of semigroup generators S = {s1, ..., sk}, 1 /∈ S , the growth series

of G with respect to S is the power series

f (z) =
∑
g∈G

z |g | =
∞∑
n=0

anz
n ∈ Z

[
[z ]
]
,

where |g | is the length of g in S ∪ S−1, and an is the number of

elements of G of length n.

In [Grigorchuk-N ’97] we also defined the complete growth series

of G with respect to S as

F (z) =
∑
g∈G

gz |g | =
∞∑
n=0

Anz
n ∈ Z[G ]

[
[z ]
]
,

where An is the sum of all elements of G of length n viewed as an

element of the group ring: An =
∑

g∈G ,|g |=n g ∈ Z[G ].
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Theorem

If (G , S) has finitely many cone types, then its complete growth

series is rational.

Rationality of the complete growth series F (z) implies rationality

of the growth series f (z) via the augmentation map g 7→ 1.

Virtually abelian groups have rational complete growth series

(Liardet). Some of them have infinitely many cone types. Similarly,

the growth series of the Heisenberg group H3 is rational, but the

number of cone types in the Cayley graph is infinite.

Proof: F (z) =
∑K

i=1 Fi (z) , where Fi (z) =
∑∞

n=0 A
i
nz

n with

Ai
n =

∑
|g |=n,g of type i g .

The coefficients Ai
n satisfy a linear recursion

(A1
n, ...,A

K
n )tr = R(A1

n−1, ...,A
K
n−1)tr

with the matrix R = (rij)1≤i ,j≤K where rij = succ(i , j)/pred(i).
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The growth series of the surface group Gg , g ≥ 2 with respect to

the generators Sg was computed by Cannon:

fg (z) =
1 + 2z + 2z2 + ...+ 2z2g−1 + z2g

1− (4g − 2)z − (4g − 2)z2 − ...− (4g − 2)z2g−1 + z2g
.

It’s denominator is a reciprocal Salem polynomial with exactly

one root outside the unit disc.

This is also the case for some cocompact hyperbolic Coxeter

groups.
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One can rewrite this formula as

fg (z) =
(1 + z)(1− z2g )

1− (4g − 1)z + (4g − 1)z2g − z2g+1
.

Compare this with the formula for the complete growth series of

Gg with respect to Sg :

Fg (z) =
(1− z2)(1− z4g )

∆
, with

∆ = 1− A1z + (4g − 1)z2 + Pb
2gz

2g − P2g−1z2g+1+

Pb
2gz

2g+2 + (4g − 1)z4g − A1z
4g+1 + z4g+2,

a reciprocal polynomial with coefficients in Z[Gg ] where Pb
2g is the

sum of all subwords of length 2g with first letters in

{b1, b−11 , ..., bg , b
−1
g } of the cyclic words r =

∏g
i=1[ai , bi ] and r−1;

and P2g−1 is the sum of all subwords of length 2g − 1 of the cyclic

words r and r−1. 13



2. Cogrowth and random walk. Suppose G = F (S)/N where N

is a normal subgroup in the free group F (S). The cogrowth

series of the pair G , S is defined as

l(z) =
∑

g∈F (S):g∈N

z |g | =
∞∑
n=0

λnz
n ,

where λn is the number of loops without back-trackng based at e

in the Cayley graph Cay(G ,S) = the number of freely reduced

words of length n in F (S) that are equal to 1 in G .

It turns out that there is an algebraic equation (discovered by

Grigorchuk ’78) that relates the cogrwoth series l(z) and the

generating series of the return probabilities for the simple random

walk on Cay(G , S)

m(z) =
∞∑
n=0

p(n)(e, e)zn.
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In particular, the so-called spectral radius ρ(G ,S) of the random

walk (which is the reciprocal of the radius of convergence of the

series m(z)) is an algebraic number if and only if the rate of

cogrowth of (G , S) is an algebraic number. It is a long-standing

open problem whether the spectral radius of the surface groups is

an algebraic number.

The language of freely reduced words in F (S) that are equal to 1

in G is sometimes called WP, the ”word problem” in (G ,S). The

word problem in a word hyperbolic group is solvable, i.e. there

exists an algorithm that, given a word in S∗ decides in finite time

whether this word is equal to 1 in G or not. However the

complexity of WP as a language is not known even for surface

groups. The language WP is regular (which would imply that the

cogrowth series is rational) iff the group is finite, and it is context

free (whcih would imply that the cogrowth series is algebraic) iff

the group is virtually free (Müller-Schupp).
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It is not known whether the spectral radius of the surface group is

an algebraic number, but we have good estimates on its value:

0.662772 ≤ ρ(G2, S2) ≤ 0.662816,

where ρ(G ,S) = lim supn p
(2n)(e, e)1/2n ∈ [0, 1] is the rate of

decay of return probabilities for the simple random walk on the

Cayley graph starting from e.

Numerical experiments suggest that the actual value is closer to

the upper bound, obtained in [N, ’97]. The lower bound was

recently imroved to the above value in [Gouezel ’15]. Both

estimates are obtained with the help of the automaton Act of cone

types.

The automaton Act being a finite directed graph, we can consider

its directed cover: choose a starting point and construct a tree

whose vertices are all the (directed) paths of finite length in Act . 16



It turns out that this directed covering tree of the automaton Act

admits still another interpretation: it can be understood as the tree

of geodesics T(G ,S) whose vertices are in one-to-one

correspondence with the set of geodesics in Cay(G ,S) and two

geodesics are connected by an edge iff one of them is an extension

by one edge of the other.

The tree of geodesics of a Cayley graph with finitely many cone

types is itself a graph with finitely many cone types. There is a

natural projection of TG ,S to Cay(G , S):

θ : V (TG ,S) → G

γ = [1G , g ] 7→ g .

This map is locally injective as the induced map on the set of

edges is of the form
(
[1G , g ], [1G , gs]

)
7→ (g , gs) (but not a local

isomorphism). It preserves the cone types.

17



On the tree of geodesics we can consider the random walk that is

the lift of the simple random walk on Act . Its transition

probabilities are determined by the cone types. Random walks on

trees with finitely many cone types were studied in detail in [N,

Woess ’01]. In particular, the generating series of the return

probabilities on such a tree is an algebraic function and ρ(T(G ,S))

is an algebraic number. It was shown in [N ’04] that for (G , S)

with finitely many cone types ρ(G , S) ≤ ρ(T(G ,S)).

On the other hand, Gouezel estimated the spectral radius from

below via the Perron-Frobenius eigenvalue and the

Perron-Frobenius eigenvector of the matrix Act .

Note that the automaton Act for (Gg ,Sg ) is ergodic, that is, the

underlying graph is strongly connected, which allows application of

the Perron-Frobenius thorem and guarantees the existence of the

positive real eigenvalue biggest in absolute value, of multiplicity 1

and with positive eigenvector. 18



3. Unitary representations. Given a finitely generated group, it

is in general a hard problem to classify its irreducible unitary

representations. For n.e. hyperbolic groups there is no hope of a

classification, but there are a few classes of representations that

are known to come from various geometric constructions.

In a recent joint work [Kuhn, Manara, N. ’19] we construct a

family of irreducible unitary representations determined by the cone

types automaton Act .

In principle, the construction works for any group with finitely

many cone types, under the condition that the cone type

automaton is ergodic. However the technical details in the paper

are done for the example of surface groups. Previously such

representations were constructed by Kuhn and Steger ’04 for free

groups, but the construction there is considerably different, as the

free group has infinite many ends, while the surface groups are

one-ended. 19



Definition

A matrix system is given by the following data:

• a finite-dimensional complex vector space Vc , for each labelled

cone type c ∈ Vert(Act);

• a linear map Hc,c ′,s : Vc → Vc ′ , for each directed edge c
s−→ c ′

in Act ;

• Hc,c ′,s := 0 fir all c a cone type and s ∈ S a generator with

s /∈ c, and any c ′.

The matrix system thus obtained is denoted {Vc ,Hc,c ′,s}.

An important particular case is that of scalar systems where

Vc ' C and every Hc,c ′,s is represented by a complex scalar.

For a matrix system {Vc ,Hc,c ′,s} we define the finite dimensional

vector space

V :=
⊕

c∈Vert(Act)

Vc .
20



For a geodesic path γ = (v0, ..., vn) labelled by a word s1...sn in the

Cayley graph, we define the linear map Hγ : Vc0 → Vcn as the

composition

Hγ := Hcn−1,cn,sn · · ·Hc0,c1,s1 .

The map Hγ can be thought of as a map Hγ : V → V .

Multiplicative functions are defined on the group G and take

values in the vector space V .

Definition

Let y ∈ G be a vertex of cone type c and let v ∈ Vc . The

elementary multiplicative function supported on Cone(y) with

first value v is the function m[y , v ] : G → V defined by

m[y , v ](z) :=


0 if z /∈ Cone(y),

v if z = y ,∑
γ: a geodesic from y to z Hγv if z ∈ Cone(y) \ {y}.
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A multiplicative function is a linear combination of elementary

multiplicative functions. The space of multiplicative functions is

denoted by H∞(Vc ,Hc,c ′,s).

Our main technical result is that (on a surface group with a

positive scalar system) there exists a positive definite sesquilinear

form B on V ⊗V that induces a translation invariant inner product

on H∞(Vc ,Hc,c ′,s), so that when we complete it, we get a Hilbert

space Hm(Vc ,Hc,c ′,s) of multiplicative functions. The construction

of B uses the Perron-Frobenius vector of an over matrix

constructed from the cone type automaton and the scalar system.

For g ∈ G and f ∈ H∞(Vc ,Hc,c ′,s) the left regular action of G on

Hm(Vc ,Hc,c ′,s) is called a multilplicative representation:

(πm(g)f ) (z) := f
(
g−1z

)
, z ∈ G .

Invariance of the inner product ⇒ the representation is unitary.
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Theorem

Any such multiplicative representation is tempered, i.e., is weakly

contained in the left regular representation (the representation of

G in the Hilbert space l2(G ) with the left regular action).

Recall that function of positive type associated with a unitary

representation π of a group G on a Hilbert space H is a function

g ∈ G 7→ 〈π(g)φ, φ〉, for a fixed vector φ ∈ H. Given unitary

representations π1, π2, we say that π1 is weakly contained in π2 if

all functions of positive type associated to π1 can be approximated

uniformly on the finite subsets of G by finite sums of functions of

positive type associated to π2.

For example, amenability of G is equivalent to the trivial

representation being weakly contained in the left regular

representation.
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Any tempered representation gives rise to a boundary

representation in the following sense.

Denote by ∂G the Gromov boundary of the Cayley graph

Cay(G , S) (i.e. the compactification of the metric space

Cay(G , S) defined as the space of equivalence classes of geodesic

rays from e, where two geodesic rays are equivalent if they remain

at bounded distance).

Any tempered representation can be extended to a representation

of the cross-product G n C (∂G ). We prove that it is irreducible.
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Thank you!


