Locally finite	Green finite	Semigroups	Completely regular	Inverse

Local finiteness for Green's relations in varieties of inverse semigroups and completely regular semigroups

Pedro V. Silva

CMUP, University of Porto

Cremona, 12th June 2019

Pedro V. Silva Local finiteness for Green's relations

・ 同 ト ・ ヨ ト ・ ヨ ト

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	000000	00000000

Joint work with

Filipa Soares (Polytechnic Institute of Lisbon, Portugal) Mikhail Volkov (Ural Federal University, Russia)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- A semigroup variety is the class of all semigroups satisfying some collection of identities (like xy = yx or x² = x)
- If such a collection can involve only finitely many variables, the variety is of finite axiomatic rank

イロト イポト イヨト イヨト

A semigroup variety is the class of all semigroups satisfying some collection of identities (like xy = yx or x² = x)
If such a collection can involve only finitely many variables,

• A variety is locally finite if all its finitely generated members

• For instance, the variety defined by $x^2 = x$ is locally finite

イロト イポト イヨト イヨト

Local finiteness for Green's relations

the variety is of finite axiomatic rank

while the variety defined by xy = yx is not

Pedro V. Silva

are finite

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	000000	00000000
D	B			

Bounded Burnside problem

- A group G has finite exponent if it satisfies the identity $x^n = 1$ for some integer $n \ge 1$
- The bounded Burnside problem asks if there exists an infinite finitely generated group with bounded exponent

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	000000	0000000

Bounded Burnside problem

- A group G has finite exponent if it satisfies the identity $x^n = 1$ for some integer $n \ge 1$
- The bounded Burnside problem asks if there exists an infinite finitely generated group with bounded exponent
- The positive answer was given in 1968 by Novikov and Adian
- We refer to infinite finitely generated groups of finite exponent as Novikov-Adian groups (NAGs)

イロト イポト イヨト イヨト 二日

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	000000	00000000
Periodic v	arieties			
	unctics			

• A semigroup with zero *S* is a nilsemigroup if some power of each element in *S* is equal to zero

・ロト ・回ト ・ヨト ・ヨト

3

Sar

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
Periodic v	arieties			

- A semigroup with zero *S* is a nilsemigroup if some power of each element in *S* is equal to zero
- A semigroup variety is periodic if all its one-generated members are finite
- Clearly, a locally finite variety must be periodic

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Green finite Locally finite

0000

Semigroups

Completely regular

Inverse

A remarkable theorem of Mark Sapir

Theorem (Sapir 1987)

A periodic variety V of semigroups of finite axiomatic rank is locally finite if and only if:

> Pedro V. Silva Local finiteness for Green's relations

・ロト ・回ト ・ヨト ・ヨト

Locally finite ○○○●

Green finite

Semigroups

Completely regular

Inverse

A remarkable theorem of Mark Sapir

Theorem (Sapir 1987)

A periodic variety **V** of semigroups of finite axiomatic rank is locally finite if and only if:

(i) all nilsemigroups in **V** are locally finite;

Pedro V. Silva Local finiteness for Green's relations

イロト イヨト イヨト イヨト

Locally finite Green finite Semigroups

0000

Completely regular

Inverse

A remarkable theorem of Mark Sapir

Theorem (Sapir 1987)

A periodic variety V of semigroups of finite axiomatic rank is locally finite if and only if:

- (i) all nilsemigroups in **V** are locally finite;
- (ii) V contains no NAGs.

イロン イヨン イヨン ・ ヨン

Locally finite	Green finite •0000	Semigroups	Completely regular	Inverse
Green's re	lations			

The following five equivalence relations can be defined on every semigroup S:

- $x \mathcal{R} y$ if x and y are prefixes of each other
- $x \mathcal{L} y$ if x and y are suffixes of each other
- $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $\mathcal{D} = \mathcal{R} \circ \mathcal{L} (= \mathcal{L} \circ \mathcal{R})$
- $x \mathcal{J} y$ if x and y are factors of each other

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Locally finite	Green finite ●○○○○	Semigroups	Completely regular	Inverse
Green's re	lations			

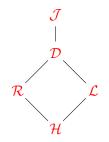
The following five equivalence relations can be defined on every semigroup S:

- $x \mathcal{R} y$ if x and y are prefixes of each other
- $x \mathcal{L} y$ if x and y are suffixes of each other
- $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $\mathcal{D} = \mathcal{R} \circ \mathcal{L} (= \mathcal{L} \circ \mathcal{R})$
- $x \mathcal{J} y$ if x and y are factors of each other

They were introduced by James Green in 1951 and are collectively referred to as Green's relations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

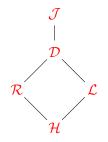
Locally finite	Green finite ○●○○○	Semigroups	Completely regular	Inverse 00000000
Comparison				



・ロト ・回 ト ・ヨト ・ヨト

Ð,

Locally finite	Green finite ○●○○○	Semigroups	Completely regular	Inverse 00000000
Comparison				

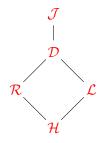


• Periodic semigroups: $\mathcal{J} = \mathcal{D}$

イロト イヨト イヨト イヨト

E

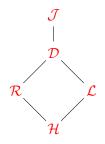
Locally finite	Green finite ○●○○○	Semigroups	Completely regular	Inverse 00000000
Comparison				



- Periodic semigroups: $\mathcal{J} = \mathcal{D}$
- Groups: all Green's relations coincide with the universal relation

・ロト ・回ト ・ヨト ・ヨト

Locally finite	Green finite ○●○○○	Semigroups	Completely regular	Inverse
Comparison				



- Periodic semigroups: $\mathcal{J} = \mathcal{D}$
- Groups: all Green's relations coincide with the universal relation
- Nilsemigroups: all Green's relations coincide with equality

- (回) (注) (注) (注) (三)

 Locally finite
 Green finite
 Semigroups
 Completely regular
 Inverse

 0000
 000000
 000000
 000000
 0000000

Locally Green finite varieties

- Let \mathcal{K} be one of the five Green's relations
- A variety V of semigroups is said to be locally *K*-finite if each finitely generated semigroup in V has only finitely many *K*-classes

 Locally finite
 Green finite
 Semigroups
 Comp

 0000
 00000
 00000
 0000

イロト イポト イヨト イヨト

Locally Green finite varieties

- Let \mathcal{K} be one of the five Green's relations
- A variety V of semigroups is said to be locally *K*-finite if each finitely generated semigroup in V has only finitely many *K*-classes
- Volkov, Silva and Soares 2018: classification of locally *K*-finite semigroup varieties

 Motivation: a natural generalization of local finiteness that bypasses the classical Burnside problem (as all semigroup varieties consisting of groups are locally *K*-finite for any *K*)

・ロト ・回ト ・ヨト ・ヨト

 Locally finite
 Green finite
 Semigroups
 Completely regular
 Inverse

 00000
 000000
 000000
 0000000
 0000000
 00000000

- Motivation: a natural generalization of local finiteness that bypasses the classical Burnside problem (as all semigroup varieties consisting of groups are locally \mathcal{K} -finite for any \mathcal{K})
- Of course, every locally finite variety is locally *K*-finite for any *K*; hence, only locally *K*-finite varieties which are not locally finite are of interest

イロト イポト イヨト イヨト

Locally finite	Green finite 0000●	Semigroups	Completely regular	Inverse 00000000
Not really				

- $(\mathbb{N}, +)$ has infinitely many \mathcal{J} -classes
- Hence locally \mathcal{K} -finite varieties are periodic for every \mathcal{K}

イロト イロト イヨト イヨト 三日

SQ C

Locally finite	Green finite ○○○○●	Semigroups	Completely regular	Inverse
Not really				

- $(\mathbb{N},+)$ has infinitely many \mathcal{J} -classes
- Hence locally \mathcal{K} -finite varieties are periodic for every \mathcal{K}
- Every nilsemigroup is \mathcal{J} -trivial
- Thus, if V is a locally *K*-finite variety, then nilsemigroups in V are locally finite

イロト イポト イヨト イヨト 二日

Sar

Locally finite	Green finite 0000●	Semigroups	Completely regular	Inverse
Not really				

- $(\mathbb{N},+)$ has infinitely many \mathcal{J} -classes
- Hence locally \mathcal{K} -finite varieties are periodic for every \mathcal{K}
- Every nilsemigroup is \mathcal{J} -trivial
- Thus, if V is a locally *K*-finite variety, then nilsemigroups in V are locally finite
- $\bullet\,$ Thus, Sapir's theorem tells us that every locally ${\cal K}\mbox{-finite}$ variety of finite axiomatic rank which is not locally finite contains a NAG

イロト イポト イヨト イヨト 二日

Locally finite	Green finite	Semigroups •000000	Completely regular	Inverse
Basic pro	perties			

If K ⊆ K' are Green's relations, then every locally K-finite variety of semigroups is locally K'-finite

・ロット (日) ・ (日) ・ (日)

3

Sar

Locally finite	Green finite	Semigroups •000000	Completely regular	Inverse 00000000
Basic prop	erties			

- If K ⊆ K' are Green's relations, then every locally K-finite variety of semigroups is locally K'-finite
- Since locally *J*-finite varieties must be periodic, a variety of semigroups is locally *J*-finite if and only if it is locally *D*-finite

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups • 000000	Completely regular	Inverse 00000000
Basic prop	erties			

- If K ⊆ K' are Green's relations, then every locally K-finite variety of semigroups is locally K'-finite
- Since locally *J*-finite varieties must be periodic, a variety of semigroups is locally *J*-finite if and only if it is locally *D*-finite
- A variety of semigroups is locally *H*-finite if and only if it is both locally *R*-finite and locally *L*-finite

イロト イポト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	000000	000000	00000000
Counterex	amples			
Counterez	ampies			

• No other connections hold in general

Locally finite	Green finite	Semigroups ⊙●○○○○○	Completely regular	Inverse
Counterer	vamples			

- No other connections hold in general
- Let $n \ge 665$ be odd and let \mathbb{CR}_n consist of all semigroups which are unions of groups whose exponent divides n. Then \mathbb{CR}_n is locally \mathcal{D} -finite but neither locally \mathcal{R} -finite nor locally \mathcal{L} -finite

Locally finite	Green finite	Semigroups ○●○○○○○	Completely regular	Inverse
Counterex	amples			

- No other connections hold in general
- Let $n \ge 665$ be odd and let \mathbb{CR}_n consist of all semigroups which are unions of groups whose exponent divides n. Then \mathbb{CR}_n is locally \mathcal{D} -finite but neither locally \mathcal{R} -finite nor locally \mathcal{L} -finite
- The variety LRO of left regular orthogroups is locally *L*-finite but not locally *R*-finite

イロト イポト イヨト イヨト 二日

Locally finite	Green finite	Semigroups ○○●○○○○	Completely regular	Inverse
Results				

We succeeded on characterizing all the locally *K*-finite varieties of semigroups V for every Green's relation *K*

NQ C

ocally finite	Green finite 00000	Semigroups	Completely regular	Inverse

Results

- We succeeded on characterizing all the locally *K*-finite varieties of semigroups V for every Green's relation *K*
- Forbidden objects are found for each one of the concepts
- Constructions involving NAGs are central in all these results

・ロト ・回ト ・ヨト

Э

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
Results				

- A semigroup is completely regular if it is the union of its subgroups
- Some of the results involve reductions to the subvariety
 CR(V) containing all the completely regular semigroups in V

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
Results				

- A semigroup is completely regular if it is the union of its subgroups
- Some of the results involve reductions to the subvariety
 CR(V) containing all the completely regular semigroups in V
- The cases of varieties of periodic completely regular semigroups and periodic semigroups with central idempotents were discussed in depth

Locally finite	Green finite	Semigroups ○○○○●○○	Completely regular	Inverse 00000000
$L_H(G)$				

- Let G be a group and let H be a subgroup of G
- Denote by $L_H(G)$ the union of G with the set $G_H = \{gH \mid g \in G\}$ of the left cosets of H in G

イロン スポン スポン スポン 一部

Locally finite	Green finite	Semigroups ○○○○●○○	Completely regular	Inverse 00000000
$L_H(G)$				

- Let G be a group and let H be a subgroup of G
- Denote by $L_H(G)$ the union of G with the set $G_H = \{gH \mid g \in G\}$ of the left cosets of H in G
- Extend the multiplication in G to $L_H(G)$ by

 $g_1(g_2H) = g_1g_2H, \quad (g_1H)g_2 = (g_1H)(g_2H) = g_1H$

- Note that we view the coset *gH* as different from *g* even if *H* is the trivial subgroup
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros

- Note that we view the coset *gH* as different from *g* even if *H* is the trivial subgroup
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros
- In the dual way, we define the semigroup $R_H(G) = G \cup \{Hg \mid g \in G\}$

- Note that we view the coset *gH* as different from *g* even if *H* is the trivial subgroup
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros
- In the dual way, we define the semigroup $R_H(G) = G \cup \{Hg \mid g \in G\}$
- We say that a semigroup *S* is a locally finite extension of its ideal *J* if the Rees quotient *S*/*J* is locally finite

Locally finite	Green finite	Semigroups ○○○○○●	Completely regular	Inverse 00000000
A theorem	for \mathcal{H}			

Theorem (VSS 2018)

A semigroup variety V of finite axiomatic rank is locally \mathcal{H} -finite if and only if either V is locally finite or satisfies the following conditions:

・ロト ・回ト ・ヨト ・ヨト

Locally finite	Green finite	Semigroups ○○○○○○●	Completely regular	Inverse 00000000
A theorem	for \mathcal{H}			

Theorem (VSS 2018)

A semigroup variety V of finite axiomatic rank is locally \mathcal{H} -finite if and only if either V is locally finite or satisfies the following conditions:

 (i) every semigroup in V is a locally finite extension of a periodic completely regular ideal;

・ 同下 ・ ヨト ・ ヨト

 Locally finite
 Green finite
 Semigroups
 Completely regular
 Inversion

 0000
 00000
 00000
 00000
 00000
 00000

A theorem for $\boldsymbol{\mathcal{H}}$

Theorem (VSS 2018)

A semigroup variety V of finite axiomatic rank is locally \mathcal{H} -finite if and only if either V is locally finite or satisfies the following conditions:

- (i) every semigroup in V is a locally finite extension of a periodic completely regular ideal;
- (ii) V contains none of the semigroups $L_H(G)$, $R_H(G)$, where G is a NAG and H is its subgroup of infinite index.

イロト イヨト イヨト イヨト

Varieties of semigroups are not enough

Since (N, +) is a subsemigroup of (Z, +) which is not a group, groups do not constitute a variety of semigroups

・ロト ・回ト ・ヨト ・ヨト

Locally finite	Green finite	Semigroups	Completely regular •00000	Inverse 00000000
Mantalta				

Varieties of semigroups are not enough

- Since (ℕ, +) is a subsemigroup of (ℤ, +) which is not a group, groups do not constitute a variety of semigroups
- But they constitute a variety of unary semigroups, where the unary operation is group inversion
- Similar problems affect other classes containing groups

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	00000	00000000
Varieties	of unary sem	igroups		

• Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:

・ 同 ト ・ ヨ ト ・ ヨ ト

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
Varieties of	f unary sem	igroups		

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
 - the variety **CR** of completely regular semigroups

Locally finite	Green finite	Semigroups	Completely regular	Inverse
A/ + .+	C			

Varieties of unary semigroups

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
 - the variety CR of completely regular semigroups
 - the variety Inv of inverse semigroups

・ロト ・回ト ・ヨト ・ヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
×7 · ·	6			

Varieties of unary semigroups

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
 - the variety CR of completely regular semigroups
 - the variety Inv of inverse semigroups
- Both CR and Inv can be seen as *I*-varieties: subvarieties of the variety of *I*-semigroups (defined by the identities x(yz) = (xy)z, (x')' = x and xx'x = x)

イロト イポト イヨト イヨト 二日

Locally finite	Green finite	Semigroups	Completely regular	Inverse
Complete	ly regular ser	nigroups		

• The unary operation corresponds to group inversion in the appropriate subgroup

・ロト ・回ト ・ヨト ・ヨト

3

Sar

Locally finite	Green finite	Semigroups	Completely regular	Inverse
Complete	ly regular ser	nigroups		

- The unary operation corresponds to group inversion in the appropriate subgroup
- $S \in CR$ is completely simple if \mathcal{D} is the universal relation

San

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	00000	00000000
Complete	les an and an an			

Completely regular semigroups

- The unary operation corresponds to group inversion in the appropriate subgroup
- $S \in \mathbf{CR}$ is completely simple if \mathcal{D} is the universal relation
- Completely simple semigroups can be described as Rees matrix semigroups

イロト イポト イヨト イヨト 二日

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
Basic facts				

• $\mathcal{J} = \mathcal{D}$ and is a congruence on every $S \in \mathbf{CR}$

Pedro V. Silva Local finiteness for Green's relations

Locally finite	Green finite	Semigroups	Completely regular	Inverse
Basic facts				

- $\mathcal{J} = \mathcal{D}$ and is a congruence on every $S \in \mathbf{CR}$
- S/D is a semilattice and each D-class is a completely simple semigroup

SQ C

Locally finite	Green finite	Semigroups	Completely regular	Inverse
Basic facts				

- $\mathcal{J} = \mathcal{D}$ and is a congruence on every $S \in \mathbf{CR}$
- S/D is a semilattice and each D-class is a completely simple semigroup
- But every semilattice is locally finite
- Hence **CR** is locally *D*-finite (and consequently locally *J*-finite)

Locally finite	Green finite	Semigroups	Completely regular	Inverse
$L_H(G)$ as a unary semigroup		igroup		

- Let G be a group and let H be a subgroup of G
- We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

na C

Locally finite	Green finite	Semigroups	Completely regular	Inverse
$L_H(G)$ as	a unary sem	igroup		

- Let G be a group and let H be a subgroup of G
- We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$
- We write $L(G) = L_{\{1\}}(G)$

Locally finite	Green finite	Semigroups	Completely regular	Inverse
$L_H(G)$ as a	a unary sem	igroup		

- Let G be a group and let H be a subgroup of G
- We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$
- We write $L(G) = L_{\{1\}}(G)$
- Dually, we define R(G)

・ロット (雪) (中) (日) (日)

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000000
${\cal R}$, ${\cal L}$ and ${\cal H}$!			

Let V be an *I*-variety of completely regular semigroups.

Pedro V. Silva Local finiteness for Green's relations

・ロト ・回ト ・ヨト ・ヨト

Э

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	00000	00000000
\mathcal{R} \mathcal{L} and	H			

Let V be an *I*-variety of completely regular semigroups.

(i) V is locally *R*-finite if and only if V contains none of the completely regular semigroups L(G) where G is either Z or a NAG.

- 4 同下 4 日下 4 日下

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	00000●	0000000
\mathcal{R} (and	I H			

Let **V** be an *I*-variety of completely regular semigroups.

- (i) V is locally *R*-finite if and only if V contains none of the completely regular semigroups L(G) where G is either Z or a NAG.
- (ii) V is locally *L*-finite if and only if V contains none of the completely regular semigroups *R*(*G*) where *G* is either Z or a NAG.

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	00000●	0000000
\mathcal{R} (and	I H			

- Let **V** be an *I*-variety of completely regular semigroups.
 - (i) V is locally *R*-finite if and only if V contains none of the completely regular semigroups L(G) where G is either Z or a NAG.
- (ii) V is locally *L*-finite if and only if V contains none of the completely regular semigroups *R*(*G*) where *G* is either Z or a NAG.
- (iii) V is locally *H*-finite if and only if V contains none of the completely regular semigroups L(G), R(G) where G is either Z or a NAG.

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse •0000000
Inverse se	migroups			

A semigroup S is inverse if, for every a ∈ S, there exists a unique a⁻¹ satisfying aa⁻¹a = a and a⁻¹aa⁻¹ = a⁻¹

イロン スポン スポン スポン 一部

Sar

Locally finite	Green finite	Semigroups	Completely regular	Inverse •0000000
Inverse se	migroups			

- A semigroup S is inverse if, for every a ∈ S, there exists a unique a⁻¹ satisfying aa⁻¹a = a and a⁻¹aa⁻¹ = a⁻¹
- Up to isomorphism, inverse semigroups are semigroups of partial injective functions closed under composition and inverse functions
- The unary operation is the obvious one

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse ○●○○○○○○
Basic facts				

In any variety of inverse semigroups:

• locally \mathcal{J} -finite \Leftrightarrow locally \mathcal{D} -finite

・ロト ・回ト ・ヨト ・ヨト

3

Sar

Locally finite	Green finite	Semigroups	Completely regular	Inverse 0000000
Basic facts				

In any variety of inverse semigroups:

- locally \mathcal{J} -finite \Leftrightarrow locally \mathcal{D} -finite
- $\bullet \ \mathsf{locally} \ \mathcal{H}\text{-finite} \Leftrightarrow \mathsf{locally} \ \mathcal{R}\text{-finite} \Leftrightarrow \mathsf{locally} \ \mathcal{L}\text{-finite}$

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse
Adapting	a construction	of Norman	Reilly	

- Let G be a nontrivial group
- We define a semigroup with zero $\widetilde{N}(G) = G \cup (G \times G) \cup \{0\}$

San

Locally finite	Green finite	Semigroups	Completely regular	Inverse ○○●○○○○○
		<u> </u>	B	

Adapting a construction of Norman Reilly

- Let G be a nontrivial group
- We define a semigroup with zero $\widetilde{N}(G) = G \cup (G \times G) \cup \{0\}$
- The multiplication in G is extended to $\widetilde{N}(G)$ by

$$g(h,k) = (gh,k), \quad (h,k)g = (h,kg),$$

$$(g,h)(k,\ell) = \begin{cases} (g,\ell) & \text{if } h = k \\ 0 & \text{if } h \neq k \end{cases}$$

• $\widetilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)

イロン イヨン イヨン

Э

- $\widetilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\widetilde{N}(G)$

E

- $\widetilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\widetilde{N}(G)$
- $\widetilde{N}(G)$ has three \mathcal{D} -classes

Locally finite	Green finite	Semigroups	Completely regular	Inverse 000●0000
Properties	s of $\widetilde{N}(G)$			

- $\widetilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\widetilde{N}(G)$
- $\widetilde{N}(G)$ has three \mathcal{D} -classes
- If G is infinite, $\widetilde{N}(G)$ has infinitely many \mathcal{R} -classes

 $\begin{array}{c|c} \mbox{Locally finite} & \mbox{Green finite} & \mbox{Semigroups} & \mbox{Completely regular} & \mbox{Inverse} & \mbox{constant} \\ \mbox{Separating } \mathcal{D} \mbox{ from } \mathcal{R} \end{array}$

Theorem (SSV 2019)

Let **V** be an *I*-variety of inverse semigroups containing some finitely generated \mathcal{D} -finite inverse semigroup which is not \mathcal{R} -finite.

Pedro V. Silva Local finiteness for Green's relations

・ロト ・回ト ・ヨト ・ヨト

 Locally finite
 Green finite
 Semigroups

 0000
 00000
 0000000

・ロト ・回ト ・ヨト ・ヨト

Separating \mathcal{D} from \mathcal{R}

Theorem (SSV 2019)

Let V be an *I*-variety of inverse semigroups containing some finitely generated \mathcal{D} -finite inverse semigroup which is not \mathcal{R} -finite. Then V contains the bicyclic monoid B or $\widetilde{N}(\mathbb{Z})$ or $\widetilde{N}(G)$ for some NAG G.

Locally finite	Green finite	Semigroups	Completely regular	Inverse
All equiva	alent!			

The following conditions are equivalent for an I-variety V of inverse semigroups:

Pedro V. Silva Local finiteness for Green's relations

・ロト ・回ト ・ヨト ・ヨト

Э

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000●00
All equiva	alent!			

The following conditions are equivalent for an I-variety V of inverse semigroups:

- (i) **V** is locally \mathcal{H} -finite;
- (ii) **V** is locally \mathcal{R} -finite;
- (iii) **V** is locally \mathcal{L} -finite;
- (iv) \mathbf{V} is locally \mathcal{D} -finite;
- (v) **V** is locally \mathcal{J} -finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

Locally finite	Green finite	Semigroups	Completely regular	Inverse 00000●00
All equiva	alent!			

The following conditions are equivalent for an I-variety V of inverse semigroups:

- (i) **V** is locally \mathcal{H} -finite;
- (ii) **V** is locally \mathcal{R} -finite;
- (iii) **V** is locally \mathcal{L} -finite;
- (iv) \mathbf{V} is locally \mathcal{D} -finite;
- (v) **V** is locally \mathcal{J} -finite.

Note that there exist locally \mathcal{D} -finite varieties which are not locally finite (e.g. the variety of groups)

イロト イポト イヨト イヨト

- The preceding results are not enough to provide a characterization by means of forbidden objects
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$

- The preceding results are not enough to provide a characterization by means of forbidden objects
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$
- With the help of the infinite square-free word due to Morse and Hedlund, we can build a finitely generated S ∈ W₂ with infinitely many *J*-classes

イロト イポト イヨト

- The preceding results are not enough to provide a characterization by means of forbidden objects
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$
- With the help of the infinite square-free word due to Morse and Hedlund, we can build a finitely generated $S \in W_2$ with infinitely many \mathcal{J} -classes
- However, W_2 does not contain neither B nor $\widetilde{N}(\mathbb{Z})$ nor $\widetilde{N}(G)$ for any NAG G

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse 0000000●
Uniform a	lmost nilsem	igroups		

• A semigroup with zero *S* is an almost nilsemigroup if some power of each non-idempotent element in *S* is equal to 0

(1日) (日) (日)

Locally finite	Green finite	Semigroups	Completely regular	Inverse 0000000●
Uniform a	almost nilsem	igroups		

- A semigroup with zero *S* is an almost nilsemigroup if some power of each non-idempotent element in *S* is equal to 0
- *S* is a uniform almost nilsemigroup if such powers can be bounded

Locally finite	Green finite	Semigroups	Completely regular	Inverse 0000000●	
Uniform almost nilsomigroups					

Uniform almost nilsemigroups

- A semigroup with zero S is an almost nilsemigroup if some power of each non-idempotent element in S is equal to 0
- *S* is a uniform almost nilsemigroup if such powers can be bounded

Theorem (SSV 2019)

Let V be a variety of inverse semigroups. Then V is locally \mathcal{D} -finite if and only if all uniform almost nilsemigroups in V are locally finite.

イロト イポト イヨト イヨト

Locally finite	Green finite	Semigroups	Completely regular	Inverse
0000	00000	0000000	000000	0000000

Grazie!

Thank you!

・ロト ・回ト ・ヨト ・ヨト

E

DQC

Pedro V. Silva Local finiteness for Green's relations