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Motivation

F-inverse monoid:
inverse monoid in which each σ-class contains a maximum
element (w.r.t. ≤, σ — minimum group congruence)

max-element : maximum element in a σ-class
each F -inverse monoid is E-unitary, i.e., the idempotents
form a σ-class

Kinyon (2014, 2018):

a natural unary operation on F -inverse monoids:

a 7→ am, the maximum element of the σ-class aσ

the class of F -inverse monoids — as algebras with the usual
inverse monoid operations and this additional unary operation
— forms a variety, i.e., can be defined by identities
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Main topic

Natural problem: find a ‘nice’ model for the free object in this
variety on any set X

Main topic of the talk:

to present such a model reminicent to the model of the free
inverse monoid on X

more generally, to present an analogue of Margolis–Meakin
expansion for F -inverse monoids
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Introduction: X -generated algebraic structures

X — set
A — algebraic structure, briefly, algebra (of a given type τ )

inverse monoids (groups): algebras of type (·,−1,1)

F -inverse monoids (groups) with unary operation m:
algebras of type (·,−1,m,1)

TX — term algebra (of type τ ) on X

Basic properties of TX :

any mapping f : X → A uniquely extends to a morphism
ϕ : TX → A (of algebras of type τ )
tϕ is the ‘value’ of t ∈ TX in A, denoted [t ]A
the subalgebra of A generated by Xf is {[t ]A : t ∈ TX}
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Introduction: X -generated algebraic structures

In special classes of algebras, terms are usually ‘simplified’.

For inverse monoids,

TX is replaced by IX , the free monoid with involution on X

For F -inverse monoids with additional unary operation m,
TX will be also ‘simplified’ later on.
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Introduction: X -generated algebraic structures

A,B — algebras (of type τ )
ϕ : A→ B — morphism (of algebras of type τ )

A is an X-generated algebra if a mapping iA : X → A is fixed s.t.
XiA generates A

ϕ is a canonical morphism if it ‘preserves the generators’, i.e.,
iAϕ = iB

Observations:

each canonical morphism is surjective

for any X -generated algebras A,B (of type τ ), if there exists a
canonical morphism A→ B then it is uniquely determined

if A is an X -generated algebra (of type τ ) and ρ is a congruence on A
then A/ρ becomes X -generated w.r.t. iA/ρ : x 7→ (xiA)ρ, and
ρ\ : A→ A/ρ becomes canonical
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Introduction: Cayley graph of an X -generated group

G — X -generated group

Cayley graph Cay(G) of G:

vertices: g ∈ G
edges: r r-g g[x ]G

x
i

x−1
(g ∈ G, x ∈ X )

involution

G acts on Cay(G)

subgraph — edges are ‘in pairs’

e.g., Γx : r r-1 [x ]G
x

i
x−1

(x ∈ X )

∆g : r r1 g (g ∈ G)
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Introduction: Cayley graph of an X -generated group

paths in Cay(G), the category Cay(G)∗

empty paths: εg (g ∈ G)

the involution and the action of G extends to Cay(G)∗

the subgraph spanned by a path p: 〈p〉

Words and paths:

for every g ∈ G and w ∈ IX , there is a unique path pg(w) in
Cay(G) s.t. αpg(w) = g and the label of pg(w) is w
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Introduction: Margolis–Meakin expansion

G — X -generated group

Margolis–Meakin expansion M(G) of G (Margolis–Meakin, 1989):
elements: (Γ,g) where Γ is a finite connected subgraph of

Cay(G) with 1 and g as vertices
multiplication: (Γ,g)(Γ′,g′) = (Γ ∪ gΓ′,gg′)

M(G) is an X -generated E-unitary inverse monoid w.r.t.
iM(G) : x 7→ (Γx , [x ]G), and the 2nd projection induces σ

Universal property of M(G):

S — X -generated E-unitary inverse monoid
ν : G→ S/σ — canonical morphism

There is a canonical morphism
ϕ : M(G)→ S such that the diagram
(of canonical morphisms) commutes.

M(G)

G

S

S/σ-ν
? ?

-ϕ
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Introduction: Margolis–Meakin expansion

Consequence:

FGX — free X -generated group

M(FGX ) is a free X-generated inverse monoid

ϕ is defined as follows:
(Γ,g)ϕ = [w ]S

for any w ∈ IX s.t. [w ]G = g and 〈p1(w)〉 = Γ

Main point of proof:

if w ,w ′ ∈ IX s.t. [w ]G = [w ′]G and 〈p1(w)〉 = 〈p1(w ′)〉 then
[w ]S = [w ′]S

M(G) as a machine: for any w ∈ IX , it computes [w ]G, all states
accessed and all basic commands executed in each state
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Introduction: Birget–Rhodes expansion

G — arbitrary group

Birget–Rhodes prefix expansion BR(G) of G
(Birget–Rhodes, 1984; Sz., 1989):

elements: (A,g) where A is a finite subset of G containing 1 and g
multiplication: (A,g)(A′,g′) = (A ∪ gA′,gg′)

BR(G) is an F -inverse monoid with max-elements ({1,g},g), and the
2nd projection induces σ

Universal property of BR(G):

F — arbitrary F -inverse monoid
ν : G→ F/σ — arbitrary morphism

There is a unique morphism
ϕ : BR(G)→ F s.t. max-elements are
mapped to max-elements and the
diagram commutes.

BR(G)

G

F

F/σ-ν
? ?

-ϕ
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F -inverse monoids in enriched signature

From now on,
every F -inverse monoid is considered
as an algebra of type (·,−1,m,1), and

F -inverse submonoids, morphisms and congruences of
F -inverse monoids

are understood in this context.

in particular,

any group is an F -inverse monoid where m is the identity mapping

for any inverse monoid which is F -inverse, σ is a congruence and
σ\ is a morphism of F -inverse monoids

the requirement ‘max-elements are mapped to max-elements’ for
the morphism ϕ in the universal property of BR(G) says precisely
that ϕ is a morphism of F -inverse monoids
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F -inverse monoids in enriched signature

Kinyon (2014, 2018):

An algebra (S; ·,−1,m,1) is an F -inverse monoid if and only if
(S; ·,−1,1) is an inverse monoid and the following holds:

am ≥ a and am = (ae)m for all a ∈ S and e ∈ E(S).

Result:
The class of all F -inverse monoids forms a variety defined by
any identity basis of the variety of inverse monoids together
with the laws

xmx−1x = x and (xy−1y)m = xm.

Further identities valid in this variety:
(xm)−1 = (x−1)m and

(x0ym
1 x1 · · · xn−1ym

n xn)m = (x0y1x1 · · · xn−1ynxn)m.
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F -inverse monoids in enriched signature

‘Simplified’ term algebra for F-inverse monoids:

the latter identities allow us to avoid m-nested terms
terms without m can be simplified as for inverse monoids

TX can be replaced by ImX = (X t X−1 t ImX )∗,
consisting of all terms of the form

t = u0vm
1 u1 · · · un−1vm

n un

where n ∈ N0, u0, . . . ,un, v1, . . . , vn ∈ IX , and
the unary operations −1 and m are defined according
to the identities above

Note: the empty symbol 1 is an identity element for · and
1−1 = 1 but 1m 6= 1
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The universal F -inverse monoid over an X -gen. group

Intuition: to generalise M(G) for F -inverse monoids

we need a machine
amenable to terms u0vm

1 u1 · · · un−1vm
n un ∈ ImX

outcome is ‘the most general F -inverse monoid over G’

words ui , vj ∈ IX should be interpreted as with M(G)

How to interpret the inputs of the form vm?

for any X -generated F -inverse monoid F with F/σ = G,
we have [vm]F = [ṽm]F provided [v ]G = [ṽ ]G

thus machine should move from the latest state g to g[v ]G
without recording anything else
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The universal F -inverse monoid over an X -gen. group

consequently,
(I) machine computes all (Γ,g) where Γ is a finite subgraph of

Cay(G) with 1 and g as vertices
(II) besides moving along paths, ‘jumping’ between vertices

should be allowed

(I) Definition of F (G):
G — X -generated group

elements: (Γ,g) where Γ is a finite subgraph of Cay(G)
with 1 and g as vertices

multiplication: (Γ,g)(Γ′,g′) = (Γ ∪ gΓ′,gg′)

F (G) is an X -generated F -inverse monoid w.r.t.
iF (G) : x 7→ (Γx , [x ]G), the 2nd projection induces σ, and
(Γ,g)m = (∆g ,g)
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The universal F -inverse monoid over an X -gen. group

Remarks:

M(G) is the inverse submonoid of F (G) generated by
XiF (G)(= XiM(G))

BR(G) is isomorphic to the inverse submonoid of F (G)
generated by (F (G))m = {(∆g ,g) : g ∈ G}

Universal property of F (G) — main result:

F — X -generated F -inverse monoid
ν : G→ F/σ — canonical morphism

There is a canonical morphism
ϕ : F (G)→ F such that the diagram
(of canonical morphisms of F-inverse
monoids) commutes.

F (G)

G

F

F/σ-ν
? ?

-ϕ
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The universal F -inverse monoid over an X -gen. group

(II) Main concept of proof:

journey in Cay(G):
non-empty sequence (p1, . . . ,pn) of paths in Cay(G) where

each pi might be an also an empty path εg (g ∈ G)
every sequence (p) is identified with p

journeys in Cay(G) form a category w.r.t. the composition
defined by

(p1, . . . ,pm)(q1, . . . ,qn) = (p1, . . . ,pmq1, . . . ,qn)

provided pmω = αq1

Note: (p1, . . . ,pmq1, . . . ,qn) 6= (p1, . . . ,pm,q1, . . . ,qn)

Fact: every journey is a product of paths and ‘jumps’ (εg , εh)

Mária B. Szendrei F -inverse monoids in enriched signature



The universal F -inverse monoid over an X -gen. group

Terms and journeys:

to every g ∈ G and t ∈ ImX , we assign a journey jg(t) in
Cay(G) as follows: for any w ∈ IX ,

jg(w) = pg(w) and jg(wm) = (εg , εg[w ]G )

and, for any u, v ∈ ImX ,

jg(uv) = jg(u)jg[u]G (v)

Note: assignment t 7→ j1(t) is not injective, e.g.,

j1(1m) = j1((xx−1)m) = (ε1, ε1)
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The universal F -inverse monoid over an X -gen. group

Main lemma:

if t , t ′ ∈ ImX s.t. [t ]G = [t ′]G and 〈j1(t)〉 = 〈j1(t ′)〉 then [t ]F = [t ′]F

hence the universal property of F (G) is straightforward with the
following ϕ:

(Γ,g)ϕ = [t ]F

for any t ∈ ImX s.t. [t ]G = g and the journey j1(t) spans Γ

Corollary of the main result:

F (FGX ) is a free X -generated F -inverse monoid

Mária B. Szendrei F -inverse monoids in enriched signature



THANK YOU!
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