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Finitely generated free-abelian groups

This talk is about semidirect products of f.g. free-abelian groups by
f.g. free groups (free-abelian-by-free, for short).

For all the talk,
• elements from Zm are row integral vectors of length m, with additive
notation;

• think endomorphisms of Zm as m×m integral matrices A, acting on
the right u 7→ uA;

• Aut(Zm) = GLm(Z) is the group of invertible matrices.
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Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

• Let X = {x1, . . . , xn} be a set, and FX the free group on it;

• fix matrices Aj ∈ GLm(Z), j = 1, . . . ,n and consider the action
A• : FX → Aut(Zm), xj 7→ Aj ;

• consider the corresponding semidirect product GA = Fn nA• Zm,

GA =

〈
x1, . . . , xn
t1, . . . , tm

∣∣∣∣ ti tk = tk ti ∀i , k ∈ [1,m]

x−1
j ti xj = tei Aj ∀i ∈ [1,m],∀j ∈ [1,n]

〉
• Notation: tu := t (u1, ..., um) := tu1

1 tu2
2 · · · t

um
m , where ‘t ’ is meaningless;

• This way, we get multiplicative notation, tutv = tu+v.

Of course, the case of trivial action, Aj = Im, corresponds to the direct
product FX × Zm, where the xj ’s commute with the ti ’s.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Abelian-by-free groups

Observation
We have the standard split short exact sequence,

1 −→ Zm −→ GA = FX nA• Zm π−→ FX −→ 1.

Observation

Writting the semidirect relation as tuxj = xj tuAj or tux−1
j = x−1

j tuA−1
j ,

we get normal forms for elements g ∈ GA as

g = wtu = w · tu1
1 tu2

2 · · · t
um
m ,

where w = gπ ∈ FX and u = (u1,u2, . . . ,um) ∈ Zm.
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Subgroups of free-abelian-by-free groups

Proposition

Let GA = FX nA• Zm. Then, any subgroup H 6 GA admits the
decomposition H ' Hπ n LH , where Hπ 6 FX , LH = H ∩ Zm 6 Zm,
and the action is the restriction of A• to both Hπ and LH , i.e.,
Hπ → Aut(LH), w 7→ Aw|LH

.

Corollary

Any subgroup H of a free-abelian-by-free group GA is again
free-abelian-by-free. Moreover, H is finitely generated if and only if
Hπ is finitely generated.
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Goal of the talk

To extend the Stallings bijection

{Subgroups of FX} ←→ {Stallings X-automata}
H 7→ Γ(H)

L(A) ←p A

to subgroups of GA, and use it to solve several algorithmic problems
in free-abelian-by-free groups. We shall focus on:

• the membership problem; X

• the subgroup conjugacy problem; caution! there are F14 n Z4

groups with unsolvable CP

• the intersection problem; caution! F2 × Z is NOT Howson
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Stallings’ automata

Definition

A Stallings automaton over X is a finite X-graph (V ,E ,q0), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q0),
3- it is deterministic (no two edges with the same label go out of (or

into) the same vertex).

NO : •

a

��

b

��
• c // •

a
** •

b

XX

c

jj

YES : •

a

��

b

��
•

a
** •

b

XX

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of FX and Stallings automata:

{f.g. subgroups of FX} ←→ {Stallings automata over X},

which is crucial for the modern understanding of the lattice of
subgroups of FX , and for many algorithmic issues about free groups.
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Reading the subgroup from the automata

Definition

To any given Stallings automaton A = (V ,E ,q0), we associate its
language:

L(A) = { labels of closed paths at q0} 6 F (A).

•

a

��

A= b

��
•

a
** •

b

XX

c

jj

L(A) = {1, a, a−1, bab, bc−1b,
babab−1cb−1, . . .}

L(A) 63 bc−1bcaa

Membership problem in L(A) is solvable.
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A basis for L(A)

Proposition

For every Stallings automaton A = (V ,E ,q0), and every maximal tree
T , the group L(A) is free with free basis

{xe = label(T [q0, ιe] · e · T [τe,q0]) ∈ L(A) | e ∈ EX − ET},

where T [p,q] denotes the geodesic in T from p to q. In particular,
rk(L(A)) = 1− |V |+ |E |.
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Constructing the automaton from the subgroup

Given H = 〈w1, . . . ,wn〉 ∈ F (A), construct the flower automaton,
denoted F(H).

Clearly, L(F(H)) = H.

... But F(H) is not in general deterministic...
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Constructing the automaton from the subgroup

In any automaton A containing the following situation, for a ∈ A±1,

• a //

a
&&

u

v

we can fold and identify vertices u and v to obtain

• a // u = v .

This operation, A A′, is called a Stallings folding.
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Constructing the automata from the subgroup

Lemma (Stallings)

If A A′ is a Stallings folding then L(A) = L(A′).

Given a f.g. subgroup H = 〈w1, . . . ,wn〉 6 FX (we assume wi are
reduced words), do the following:

1- Draw the flower automaton,
2- Perform successive foldings until obtaining a Stallings

automaton, denoted Γ(H).
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Example: H = 〈baba−1,aba−1,aba2〉

• a // •

b

��
• a // •

b

OO

a //

a

��

a

��

a

��

•

•

a

??

•
b

oo • •
b

oo

Flower(H)
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Folding #3. Γ(H)

By Stallings Lemma, L(Γ(H)) = H = 〈baba−1,aba−1,aba2〉
= 〈b,aba−1,a3〉
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Local confluence

It can be shown that

Proposition

The automaton Γ(H) does not depend on the sequence of foldings.

Proposition

The automaton Γ(H) does not depend on the generators of H.

Theorem
The following is a well defined bijection:

{f.g. subgroups of FX} ←→ {Stallings X-automata}
H 7→ Γ(H)

L(A) ←p A
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Vectored Stallings’ automata

Definition
Let us consider now, vectored X-automata, i.e., X-graphs with
vectors assigned at the heads and tails of the edges,

• u1 a u2// • ,

reading t−u1atu2 = atu2−u1A (and the inverse if traversed backwards).
... plus a subspace L 6 Zm attached to the basepoint.

Example

For a f.g. subgroup H = 〈w1tu1 , . . . ,wr tur 〉 of GA = Fn nA1,...,An Zm, we
can also construct a flower automaton.
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Vectored Stallings’ automata

Definition
Let us consider now, vectored X-automata, i.e., X-graphs with
vectors assigned at the heads and tails of the edges,

• u1 a u2// • ,

reading t−u1atu2 = atu2−u1A (and the inverse if traversed backwards).
... plus a subspace L 6 Zm attached to the basepoint (corresponding
to the purely abelian elements).

Example

For a f.g. subgroup H = 〈w1tu1 , . . . ,wr tur , tv1 , . . . , tvs〉 of
GA = Fn nA1,...,An Zm, we can also construct a flower automaton.
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Abelian moves

Definition
We need now some extra operations to allow moving abelian mass
arround:
• edge moves,
• vertex moves,
• vertex moves at the basepoint,
• open foldings,
• closed foldings,
• increase L to its closure by the labels of all closed paths at •.

Definition
A vectored Stallings A-automata is a connected and trim vectored
A-automata satisfying:
(i) A is deterministic,
(ii) L is invariant by the labels of all closed paths at •,
(iii) vectors are zero everywhere except, maybe, at the heads of
edges outside a chosen maximal tree T .
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The bijection

Lemma
With repeated use of the above operations, any vectored X-automata
A can be converted into a vectored Stallings X-automata A′.

Lemma

For H 6 GA, the result of folding F l(H), say Γ(H), is uniquely
determined by the subgroup H, modulo the choice of the maximal
tree, and with all vectors around understood ‘modulo L’.

Theorem (Delgado–V., 2016)

The following map is a bijection:

{Subgroups of GA} ←→ {Vectored Stallings X-automata}
H 7→ Γ(H)

L(A) ←p A
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Membership

Corollary (Delgado–V., 2016)

Membership is solvable in free-abelian-by-free groups.

Proof. Given wtu ∈ GA and H = 〈w1tu1 , . . . ,wr tur 〉 6 GA, do the
following:

1- draw the flower automaton F l(H);
2- perform successive foldings until obtaining the vectored Stallings

X -automaton Γ(H);
3- if w is not readable as closed path at •, answer NO;
4- otherwise, compute the full label of such a close path, say wtv;
5- if u − v ∈ L answer YES; otherwise, answer NO.
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The Subgroup Intersection Problem

(Caution!)

The groups GA are NOT Howson, in general.

Definition (The Subgroup Intersection Problem for G)

Input: g1, . . . ,gr ,g′1, . . . ,g
′
s ∈ G

Decide: 〈g1, . . . ,gr 〉 ∩ 〈g′1, . . . ,g′s〉 is f.g. and, if so, compute
generators.

Theorem (Delgado–V., 2017)

The Subgroup Intersection Problem is solvable in Fn × Zm.

Question
What about GA ?
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The key point

Given H,K 6fg GA, we know that

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.

and Hπ ∩ Kπ is f.g. (because Fn is Howson) . . . BUT

1 6 (H ∩ K )π 6 Hπ ∩ Kπ,

with possibly strict inequality.
In the case Fn × Zm (not true in general),

1 6= (H ∩ K )π E Hπ ∩ Kπ.

So,

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.⇔ (H ∩ K )π 6f .i. Hπ ∩ Kπ.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

The key point

Given H,K 6fg GA, we know that

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.

and Hπ ∩ Kπ is f.g. (because Fn is Howson) . . . BUT

1 6 (H ∩ K )π 6 Hπ ∩ Kπ,

with possibly strict inequality.
In the case Fn × Zm (not true in general),

1 6= (H ∩ K )π E Hπ ∩ Kπ.

So,

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.⇔ (H ∩ K )π 6f .i. Hπ ∩ Kπ.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

The key point

Given H,K 6fg GA, we know that

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.

and Hπ ∩ Kπ is f.g. (because Fn is Howson) . . . BUT

1 6 (H ∩ K )π 6 Hπ ∩ Kπ,

with possibly strict inequality.
In the case Fn × Zm (not true in general),

1 6= (H ∩ K )π E Hπ ∩ Kπ.

So,

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.⇔ (H ∩ K )π 6f .i. Hπ ∩ Kπ.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

The key point

Given H,K 6fg GA, we know that

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.

and Hπ ∩ Kπ is f.g. (because Fn is Howson) . . . BUT

1 6 (H ∩ K )π 6 Hπ ∩ Kπ,

with possibly strict inequality.
In the case Fn × Zm (not true in general),

1 6= (H ∩ K )π E Hπ ∩ Kπ.

So,

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.⇔ (H ∩ K )π 6f .i. Hπ ∩ Kπ.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

The key point

Given H,K 6fg GA, we know that

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.

and Hπ ∩ Kπ is f.g. (because Fn is Howson) . . . BUT

1 6 (H ∩ K )π 6 Hπ ∩ Kπ,

with possibly strict inequality.
In the case Fn × Zm (not true in general),

1 6= (H ∩ K )π E Hπ ∩ Kπ.

So,

H ∩ K is f.g. ⇔ (H ∩ K )π is f.g.⇔ (H ∩ K )π 6f .i. Hπ ∩ Kπ.



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

The free case: pullback of graphs

To compute intersections in Fn, we have the well-known technique of
the pull-back of graphs: given H,K 6fg Fn,

H → Γ(H) ↘
Γ(H)× Γ(K ) → H ∩ K

K → Γ(K ) ↗

Let us see an example with the subgroups H = 〈x3, yx〉 and
K = 〈x2, yxy−1〉 in F2 = 〈x , y | −〉
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The free case: pullback of graphs

Let H = 〈x3, yx〉, K = 〈x2, yxy−1〉 6 F2 = 〈x , y | −〉

Firstly, we compute the Stallings automata Γ(H), Γ(K ).
To compute H ∩ K we build the pull-back Γ(H)× Γ(K ):

H

K
Γ(H)× Γ(K ) ∼ Γ(H ∩ K )

=

Therefore, H ∩ K = 〈x6, yx3y−1〉.
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Intersections in Fn × Zm

Let H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

LK

LH

H

K
dd

a

a

LH ,LK

a,d

0,d

a,0

0,d

w1 w2

Γ(H)× Γ(K )

 
2a,3d

a,0

Claim:

H ∩ K = 〈u ta | u ta is componentwise-readable in Γ(H)× Γ(K )〉

(H ∩ K )π =
〈
w ∈ F{w1,w2} | w(w1t2a,w2ta) tLH ∩ w(w1t3d,w2t0) tLK 6= ∅

〉
=
〈
w ∈ F{w1,w2} | w

ab
[ 2a−3d

a−0

]
∈ LH + LK

〉

= (LH + LK )B−1ρ−1 , where B =
[ 2a−3d

a−0

]
and ρ = ab .
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w1=x6

LH ,LK w2=yx3y−1

B =
[ 2a−3d

a−0

]

〈M〉 =

M = (LH + LK )B−1

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H ∩ K )π = (LH + LK )B−1ρ−1 = Mρ−1, i.e.,

F2 > Hπ ∩ Kπ = F{w1,w2} Z2 Z2

/ / / /

1 6= (H ∩ K )π = Mρ−1 M LH + LK

ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2})

= Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/ row(D) , {e1Q,e2Q}

)
= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .
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ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2}) = Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/M, {e1,e2}

)

= Cay
(
Z2/ row(D) , {e1Q,e2Q}

)
= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .
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Intersections in Fn × Zm

w1=x6

LH ,LK w2=yx3y−1

B =
[ 2a−3d

a−0

]
〈M〉 = M = (LH + LK )B−1

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H ∩ K )π = (LH + LK )B−1ρ−1 = Mρ−1, i.e.,

F2 > Hπ ∩ Kπ = F{w1,w2} Z2 Z2

/ / / /

1 6= (H ∩ K )π = Mρ−1 M LH + LK

ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2}) = Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/M, {e1,e2}

)

= Cay
(
Z2/ row(D) , {e1Q,e2Q}

)
= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .
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Intersections in Fn × Zm

w1=x6

LH ,LK w2=yx3y−1

B =
[ 2a−3d

a−0

]
〈M〉 = M = (LH + LK )B−1

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H ∩ K )π = (LH + LK )B−1ρ−1 = Mρ−1, i.e.,

F2 > Hπ ∩ Kπ = F{w1,w2} Z2 Z2

/ / / /

1 6= (H ∩ K )π = Mρ−1 M LH + LK

ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2}) = Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/ row(M), {e1,e2}

)

= Cay
(
Z2/ row(D) , {e1Q,e2Q}

)
= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .
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Intersections in Fn × Zm

w1=x6

LH ,LK w2=yx3y−1

B =
[ 2a−3d

a−0

]
〈M〉 = M = (LH + LK )B−1

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H ∩ K )π = (LH + LK )B−1ρ−1 = Mρ−1, i.e.,

F2 > Hπ ∩ Kπ = F{w1,w2} Z2 Z2

/ / / /

1 6= (H ∩ K )π = Mρ−1 M LH + LK

ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2}) = Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/ row(M), {e1,e2}

)
= Cay

(
Z2/ row(D) , {e1Q,e2Q}

)

= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .
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Intersections in Fn × Zm

w1=x6

LH ,LK w2=yx3y−1

B =
[ 2a−3d

a−0

]
〈M〉 = M = (LH + LK )B−1

PMQ = D = diag(δ1, δ2)

2a,3d a,0

We have that (H ∩ K )π = (LH + LK )B−1ρ−1 = Mρ−1, i.e.,

F2 > Hπ ∩ Kπ = F{w1,w2} Z2 Z2

/ / / /

1 6= (H ∩ K )π = Mρ−1 M LH + LK

ρ ← →B

Then, Γ((H ∩ K )π, {w1,w2}) = Γ(Mρ−1, {w1,w2})
= Sch

(
Mρ−1, {w1,w2}

)
= Cay

(
F{w1,w2}/Mρ−1, {[w1], [w2]}

)
= Cay

(
Z2/ row(M), {e1,e2}

)
= Cay

(
Z2/ row(D) , {e1Q,e2Q}

)
= Cay(Z/δ1Z⊕ Z/δ2Z , {e1Q,e2Q}) .



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
.
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.

Then, B =
[

2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
.
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
.
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. Hence:

Γ((H ∩ K )π, {w1,w2}) = Cay (Z/1Z⊕ Z/6Z , {(1,−1), (0,1)})
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. Hence:

Γ((H ∩ K )π, {w1,w2}) = Cay (Z/1Z⊕ Z/6Z , {(1,−1), (0,1)})

w1

w2
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. After

replacing w1 → x6t (2,0),(0,3), w2 → yx3y−1t (1,0),(0,0) and folding:

w1

w2
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. After

replacing w1 → x6t (2,0),(0,3), w2 → yx3y−1t (1,0),(0,0) and folding:
(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. After

normalizing w.r.t. an spanning tree:
(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)

(2,0)(0,3)
(2,0)(0,3)

(2,0)(0,3)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)

(1,0)(0,0)

(1,0)(0,0)
(1,0)(0,0)
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. After

normalizing w.r.t. an spanning tree:
(−3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(6,0),(0,0)
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. Finally,

after equalizing the abelian labels we obtain Γ(H ∩ K ):
(−3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)

(3,0),(0,3)
(3,0),(0,3)

(3,0),(0,3)

(6,0),(0,0)
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Intersection example: case 1

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 1: a = (1,0), d = (0,1),LH = 〈(0,6)〉, LK = 〈(3,−3)〉.
Then, B =

[
2 −3
1 0

]
,M =

[−2 4
1 1

]
,Q =

[
1 −1
0 1

]
,D =

[
1 0
0 6

]
. Finally,

after equalizing the abelian labels we obtain Γ(H ∩ K ):
(−3,6)

(3,0)

(3,0)

(3,0)
(3,0)

(3,0)

(6,−6)



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Intersection example: case 1

Therefore, H = 〈t (0,6), x3 t (1,0), yx〉 K = 〈t (3,−3), x2 t (0,1), yxy−1〉 and

H ∩ K =

〈 x6yx3y−1t (3,0), x30yx3y−1x−24t (3,0),
x12yx3y−1x−6t (3,0), x36t (12,6),
x18yx3y−1x−12t (3,0), yx18y−1t (6,−6),
x24yx3y−1x−18t (3,0)

〉

Note, for example, that

H ∩ K 3 x36t (12,6) =

 =
(

x3t (1,0)
)12

t (0,6) ∈ H,

=
(

x2t (0,1)
)18(

t (3,−3)
)4
∈ K .

And that x6 ∈ Hπ ∩ Kπ but x6 6∈ (H ∩ K )π since

x6t (2,0)+λ(0,6) ∈ H

x6t (0,3)+µ(3,−3) ∈ K

but
(

(2,0) + 〈(0,6)〉
)
∩
(

(0,3) + 〈(3,−3)〉
)

= ∅.
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Intersection example: case 2

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 2: a = (3,3), d = (2,2),LH = 〈(1,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)
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H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 2: a = (3,3), d = (2,2),LH = 〈(1,2)〉, LK = 〈(0,0)〉.

Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)
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Case 2: a = (3,3), d = (2,2),LH = 〈(1,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·

w1

w2
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· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)
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Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)
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Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·
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After replacing, folding, normalizing, and equalizing, we obtain
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Intersection example: case 2

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 2: a = (3,3), d = (2,2),LH = 〈(1,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 0 and so, Γ(H ∩ K ) = Cay (Z, {0,1}).

· · ·· · ·

w1

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

· · ·· · ·

(6,6) (6,6) (6,6)(6,6)(6,6)
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Intersection example: case 3

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

(6,6)

(6,6)
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Intersection example: case 3

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.

Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

(6,6)

(6,6)
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Intersection example: case 3

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).

w1 w1
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After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):
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(6,6)
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Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).
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w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

(6,6)
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Intersection example: case 3

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):
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Intersection example: case 3

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 3: a = (3,3), d = (2,2), LH = 〈(2,2)〉, LK = 〈(0,0)〉.
Then, δ1 = 1, δ2 = 2 and so, Γ(H ∩ K ) = Cay (Z/2Z , {0,1}).

w1 w1

w2

w2

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

(6,6)

(6,6)



1. Free-abelian-by-free groups Stallings’ automata Vectored Stallings’ automata Membership Intersection

Intersection example: case 4

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 4: a = (6,6), d = (4,4) ∈ Z2, LH = 〈(6p,6p)〉, LK = 〈(0,0)〉,
for some p ∈ Z, p 6= 0.
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Intersection example: case 4

H = 〈tLH , x3 ta, yx〉, K = 〈tLK , x2 td, yxy−1〉 6 F2 × Z2

Case 4: a = (6,6), d = (4,4) ∈ Z2, LH = 〈(6p,6p)〉, LK = 〈(0,0)〉,
for some p ∈ Z, p 6= 0.
Then, δ1 = 1, δ2 = p and so, Γ(H ∩ K ) = Cay (Z/pZ , {0,1})

p vertices
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Intersection example: case 4

After replacing, folding, normalizing, and equalizing, we obtain
Γ(H ∩ K ):

(p times)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)
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Intersection example: case 4

Therefore, Hp = 〈t (6p,6p), x3t (6,6), yx〉, K = 〈x2t (4,4), yxy−1〉 and

H ∩ K =

〈 (yx−3y−1)−1x6(yx−3y−1)t (12,12)

(yx−3y−1)−2x6(yx−3y−1)2t (12,12)

...
(yx−3y−1)−(p−1)x6(yx−3y−1)p−1t (12,12)

yx3py−1

〉

Note that r(Hp) = 3, r(K ) = 2, but

r(Hp ∩ K ) = p + 1.

So, no Hanna Neumann type inequality r̃(H ∩ K ) 6 C · r̃(H) · r̃(K ) is
possible in these groups.
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THANKS
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