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Abstract

Sioson[9] in 1965 defined the left, right, lateral and quasi-ideal in 
ternary  semigroup. Continuing that we discuss here the properties of 
ideals, quasi-ideals, minimal quasi-ideals and bi-ideals.
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Introduction

D.H.Lehmer[6] gave the definition of ternary semigroup in 1932 as-

A non-empty set T is called a ternary semigroup if a ternary operation [  ] on T is 
defined and satisfies the associative law

[[𝑥1𝑥2𝑥3]𝑥4𝑥5] = [𝑥1 [𝑥2𝑥3𝑥4 ]𝑥5] = [𝑥1𝑥2 [𝑥3𝑥4𝑥5]] ∀ 𝑥𝑖 ∈ 𝑇 ∀ 𝑖, 1 ≤ 𝑖 ≤ 5

Banach showed by an example that the ternary semigroup does not necessarily 
reduce to an ordinary semigroup.

While Los[7] showed that any ternary semigroup however may be embedded in an 
ordinary semigroup in such a way that the operation in the ternary semigroup is an 
(ternary) extension of the (binary) operation of the  semigroup.

So many mathematicians Dudek[3], Feizullaer[4],Kim and Roush[5] and Sioson[9 ] did 
the work on ternary semigroup.



Quasi-ideal in Ternary semigroup

Sioson[9] gave the following definitions:

Definition 2.1: A left (right, lateral) ideal of a ternary semigroup T is a non-empty subset 
L(R,M) of T such that [TTL] ⊆L ( [RTT] ⊆ R, [TMT] ⊆ M).

Definition 2.2: A non-empty subset of T is an ideal of T if it is left , lateral and right ideal of 
T.

Definition 2.3: For each element t in T , the left, right and lateral ideal generated by ‘t’ are 
respectively given as:

• (t)L= {t}∪ [T T t]

• (t)R = {t}∪[ t T T]

• (t)M = {t}∪ [T t T] ∪ [T T t T T].

contd.



Remark 2.5 : Every right, left and lateral ideal is a quasi-ideal. But every 
quasi-ideal is not a right, a left and a lateral ideal of T. This follows from 
the example.

Example 2.6 : 𝑇 =
0 0
0 0

,
1 0
0 0

,
0 1
0 0

,
0 0
0 1

,
0 0
1 0

is a 

ternary semigroup under matrix multiplication. But

𝑄 =
0 0
0 0

,
0 1
0 0

is a quasi-ideal of T , which is neither a left, nor 

a right nor a lateral ideal of T.

Definition 2.7: A ternary sub semigroup is a subset S of a ternary 
semigroup T such that [SSS]⊆S.

Definition 2.8 : A ternary semigroup T is a ternary group if 

∀ x,y,z ∈ T ,∃ unique a,b,c in T such that [xab]=c, [ayb]=c and [abz]=c.

contd.



Definition 2.9 : A ternary semigroup T is with 0 if

[000] = 0= [0ab] = [a0b] = [ab0] = [00a] = [0b0] = [00c]    ∀a,b,c ∈ T.

Definition 2.10 : An element a in T is idempotent if [aaa] = a.

Definition 2.11: A ternary semigroup T is with identity if there exists an 
idempotent element e in T such that [aae] = a = [aea] = [eaa]  ∀ a ∈ T.

Proposition 2.12: The intersection of a quasi-ideal Q and a ternary sub 
semigroup A of a ternary semigroup T is either empty or a quasi-ideal.

Proposition 2.13:  Let Q be a non-empty subset of a ternary semigroup 
T, then the following are true:

(a) Q ∪ [TTQ] is the smallest left ideal of T containing Q.

(b) Q∪ [QTT] is the smallest right ideal of T containing Q.

(c) Q ∪ [TQT] ∪ [ TTQTT] is the smallest lateral ideal of T containing Q.

(d) If Q is a quasi-ideal of T, then 

Q = Q ∪ { [TTQ] ∩ ( [TQT] ∪ [TTQTT]) ∩ [QTT]}.



Proposition 2.14:  Let X be a non- empty subset of a ternary semi group T, 
then

(X)q = (X∪ [TTX]) ∩ (X∪[TXT]∪[TTXTT]) ∩ (X∪[XTT])

=X ∪ { [TTX] ∩ ( [TXT] ∪ [TTXTT]) ∩ [XTT]}  is the smallest quasi-ideal 
containing X.



Bi-ideal in Ternary semigroup

Definition 3.1: A ternary sub semigroup B of a ternary semigroup T is a 
bi-ideal if [BTBTB]⊆B.

Proposition 3.2:  Every quasi-ideal of a ternary semigroup T is a bi-
ideal.

Proof:  Let Q be a quasi-ideal of T. Then Q is a ternary sub semigroup of 
T. Now [QTQTQ]⊆[Q[TTT]T]⊆[QTT].

Similarly, [QTQTQ]⊆{[TQT]∪[TTQTT]} and [QTQTQ]⊆[TTQ].

Thus [QTQTQ]⊆ [QTT]∩{[TQT]∪[TTQTT]}∩[TTQ]⊆Q.



Proposition 3.3:  Let A be an ideal and Q be a quasi-ideal of T , then A∩Q is a bi- as 
well as a quasi-ideal of T.
Proof: [A∩Q A∩Q A∩Q] ⊆[AAA]∩[QQQ]⊆A∩Q implies A∩Q is a ternary sub 
semigroup of T. Also, [A∩Q T A∩Q T A∩Q] ⊆ [A [TAT]A] ∩ [QTQTQ] ⊆ [AAA]∩ Q⊆
A∩Q.

Proposition 3.4:  Let X and Y be non-empty subsets of a ternary semigroup T , then 
N=[XTY] is a bi-ideal of T.

Proposition 3.5: The intersection of an arbitrary set of bi-ideals of T is either empty 
or a bi-ideal of T.



Proposition 3.6: Every left, right or lateral ideal of T is a bi-ideal of T.

Proposition 3.7:  Let Q be a subset of a ternary semigroup T and Y be a proper non-empty 
subset of T such that 
(1) [TTQ]∪[TQT]∪[QTT]∪[TTQTT]⊆ Y
(2) Y⊆Q.
Then Y is an ideal of T. Moreover, Y is a bi-ideal of T.
The following example shows that both or either of the conditions (1) and (2) of above 
proposition are not satisfied then T is neither a left nor a right nor a lateral nor a quasi 
and nor a bi-ideal of T.

Example:  Let T= ൜
0 0
0 0

,
1 0
0 0

,
1 0
0 1

, ൠ
0 1
0 0

,
0 0
0 1

,
0 0
1 0

be a ternary semigroup 
under multiplication.

Case1: If we take Y =൜
0 0
0 0

, ൠ
1 0
0 1

and Q=൜
0 0
0 0

, ൠ
1 0
0 0

, then Q is a quasi-ideal of T and

[TTQ]∪[TQT]∪[QTT]∪[TTQTT]= ൜
0 0
0 0

,
1 0
0 0

, ൠ
0 1
0 0

,
0 0
0 1

,
0 0
1 0

⊈ Y.

Neither of [TTY],[TYT],[TTYTT],[YTT] is in Y. So, Y is not an ideal of T.
[TTY] ∩ ( [TYT] ∪ [TTYTT]) ∩ [YTT]⊈Y. Thus, Y is not a quasi-ideal of T.



Case 2: Take Y=
1 0
0 0

and Q=൜
0 0
0 0

, ൠ
1 0
0 0

implies Y⊆Q and 

[TTQ]∪[TQT]∪[QTT]∪[TTQTT]⊈ Y.

Since 
0 0
0 0

∉ Y, so Y is not a quasi-ideal of T.

[YTYTY]⊈Y, Y is not a bi-ideal of T.

Case3: Take Y= ൜
0 0
0 0

,
1 0
0 0

, ൠ
0 1
0 0

,
1 0
0 1

,
0 0
1 0

and Q= 
0 0
0 0

[TTQ]∪[TQT]∪[QTT]∪[TTQTT]= 
0 0
0 0

⊆ Y.

0 0
0 1

∈ [TTY], {[TYT]∪[TTYTT]}, [YTT] and 
0 0
0 1

∉Y.

So, Y is not an ideal of T. 

Similarly, Y is neither a quasi nor a bi-ideal of T.



Proposition 3.8:  Let X, Y and Z be three non-empty subsets of a ternary 
semigroup T and N=[XYZ]. Then N is a bi-ideal of T if one of the following 
conditions holds:

(1) X, Y ⊆ Z and Z is a bi-ideal of T.

(2) Y, Z ⊆ X and X is a bi-ideal of T.

(3) Z, X ⊆ Y and Y is a bi-ideal of T.

(4) At least one of X,Y,Z is a right ,or a left, or a lateral ideal of T.

Definition 3.9 [9]: An element ‘t’ in a ternary semigroup T is regular if there exists 
x,y in T such that [t x t y t] = t.

If all elements of T are regular, then T is said to be regular ternary semigroup.



We use definition 3.9 to show that a bi-ideal need not be a quasi-ideal.

Example 3.10: Let T be not a regular ternary semigroup and X,Y,Z be a minimal 
right, a minimal lateral and a minimal left ideal of T respectively. Then N=[XYZ] is 
a bi-ideal of T but N is not a quasi-ideal of T.

Proof:  If possible, let N=[XYZ] be a quasi-ideal of T. [XYZ]⊆[XTT]⊆X, [XYZ]⊆Y, 
[XYZ]⊆Z. So [XYZ]⊆X∩Y∩Z and X∩Y∩Z is a minimal quasi-ideal [9] of T which 
implies [XYZ]=X∩Y∩Z, and hence T is a regular ternary semigroup [9]. So, our 
assumption is false. 

Proposition 3.11: In a regular ternary semigroup, every bi-ideal is a quasi-ideal.
Proof: Sioson[9] shows that a subset Q of a regular ternary semigroup T is a quasi-
ideal if and only if [QTQTQ]∩[QTTQTTQ]⊆Q.



Proposition 3.12:  Let C be a non-empty subset of a ternary semigroup T. Then 
C∪[CCC]∪[CTCTC] is the smallest bi-ideal of T containing C.

Proof:  Let x ,y, z ∈ C∪[CCC]∪[CTCTC] be arbitrary elements.

x , y ,z  ∈ C or x ,y ,z ∈ [CCC] or x , y, z ∈ [CTCTC]. Clearly,[𝑥𝑡9𝑦𝑡10𝑧] ∈
C∪[CCC]∪[CTCTC] for 𝑡9 , 𝑡10∈ T.

Hence C∪[CCC]∪[CTCTC] is a bi-ideal of T containing C.

Suppose there exists a bi-ideal R of T containing C such that 

R⊆ C∪[CCC]∪[CTCTC] ⊆ R∪[RRR]∪[RTRTR]⊆ R.

R=  C∪[CCC]∪[CTCTC] is the smallest bi-ideal containing C.



Minimal Quasi-ideal in Ternary semigroup

Here, we are concerning the ternary semigroup without 0 and has at 
least one idempotent. Henceforth every ternary semigroup with an 
idempotent element and without 0 is denoted by T.

Remark 4.1:  If e is an idempotent element of T, then

(1) [eTT] is a minimal right ideal of T containing e.

(2) [TeT] is a minimal lateral ideal of T containing e.

(3) [TTe] is a minimal left ideal of T containing e.



Remark 4.2:  If e is an idempotent element of T, then 

[eTeTe]= [eTT]∩[TeT]∩[TTe].

Proposition 4.3: A quasi-ideal Q of T is minimal if and only if it is generated by any of its 
elements.
Proposition 4.4: A quasi-ideal Q of T is minimal if and only if Q is a ternary subgroup of T.
Proposition 4.5: Every minimal quasi-ideal Q of T can be written in the form Q=[eTeTe] 
where e is the identity of Q.

Proposition 4.6:  Let e be an idempotent element contained in a minimal left ideal L 
(minimal lateral ideal M and minimal right ideal of R) of T, then [eeL]([eeMee], [Ree]) is a 
ternary subgroup of T.

Proof:  According to Sioson[9] [eeL],[eeMee] and [Ree] are the quasi-ideals of T.

Since [Leeheeh] is the left ideal of T and [Leeheeh]⊆L for some h in L.

Therefore, minimality of L implies [Leeheeh]=L.

⇒[ee[Leeheeh]]=[eeL] for some h in L.

Thus, there exists a k in L such that [[eek][eeh][eeh]]=[eee]=e.

Hence[eeL] is a ternary subgroup and hence a minimal quasi-ideal of T.



Proposition 4.7: Let Q be a minimal quasi-ideal of T, then[eQs] and[sQe] are 
minimal quasi-ideals of T where s is any element of T and e is the identity element 
of Q.

Proposition 4.8: Let Q1,Q2 and Q3 be the minimal quasi-ideals of T with identities 
e1, e2, e3respectively. Then

[e1Q1Q2 Q3e3]=[ e1TT]∩[Te2T]∩[TTe3].

Proposition 4.9: Let Q1 and Q2 be the minimal quasi-ideals of T with identities 
e1 and e2respectively. Then

[e1Te1Te2Te2Te2e2Te1e1] = Q1.

[e2Te2Te1Te1Te1e1Te2e2] = Q2. 



Now, we give simple but important results which we will use later.

Since 𝑒1is the identity of Q1, therefore there exists 𝑠1
′ , 𝑠2

′ , 𝑡1
′ ,𝑡2

′ and 𝑡3
′ in T such 

that

(A) [𝑒1 𝑒1 [𝑒1𝑠1
′ 𝑒1] 𝑒1 [𝑒1𝑠2

′ 𝑒2]𝑒2𝑒2 𝑡1
′𝑒2 𝑡2

′𝑒2𝑒2 𝑒2[𝑒2 𝑡3
′𝑒1]𝑒1]= 𝑒1.

Thus, [𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2𝑡1𝑒2𝑡2𝑒1]= 𝑒1.

(B) Similarly, there exists 𝑡1,𝑡2, 𝑠1 and 𝑠2 in T such that

[𝑒2𝑒2𝑡1𝑒2𝑡2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2]= 𝑒2.

(C) Let e be the identity of T, then [ett]= t = [tet] = [tte]     ∀ t ∈ T

and [eet]= [ete]= [tee]= t       ∀ t ∈ T.



Proposition 4.10: All the minimal quasi-ideals of T are isomorphic. 

Proof: Let Q1 and Q2 be the minimal quasi-ideals of T with identities 𝑒1 and 𝑒2respectively.

Define a map ψ: Q1 ⟶ Q2 as

ψ([𝑒1𝑥1𝑒1𝑥2𝑒1])=[𝑒2𝑡1𝑒2𝑡2𝑒1𝑥1𝑒1𝑥2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2] ∀ [𝑒1𝑥1𝑒1𝑥2𝑒1]∈ Q1 

where 𝑡1, 𝑡2, 𝑥1, 𝑥2, 𝑠1, 𝑠2∈ T.

(A)⇒ there exists 𝑡1,𝑡2, 𝑠1 and 𝑠2 in T such that [𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2𝑡1𝑒2𝑡2𝑒1]= 𝑒1.

And     ψ[𝑒1𝑥1𝑒1𝑥2𝑒1] = ψ[𝑒1𝑦1𝑒1𝑦2𝑒1]

⇒[𝑒2𝑡1𝑒2𝑡2𝑒1𝑥1𝑒1𝑥2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2] = [𝑒2𝑡1𝑒2𝑡2𝑒1𝑦1𝑒1𝑦2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2]

Applying [𝑒1𝑒1𝑠1], [𝑒1𝑠2𝑒2]on the left-hand side and [𝑡1𝑒2𝑡2], 𝑒1on the right hand side under the ternary 
operation, we get

[𝑒1𝑥1𝑒1𝑥2𝑒1] =[𝑒1𝑦1𝑒1𝑦2𝑒1]

Thus   ψ([[𝑒1𝑥1𝑒1𝑥2𝑒1][𝑒1𝑦1𝑒1𝑦2𝑒1][𝑒1𝑧1𝑒1𝑧2𝑒1]])

=[ [𝑒2𝑡1𝑒2𝑡2𝑒1𝑥1𝑒1𝑥2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2][𝑒2𝑡1𝑒2𝑡2𝑒1𝑦1𝑒1𝑦2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2] 
[𝑒2𝑡1𝑒2𝑡2𝑒1𝑧1𝑒1𝑧2𝑒1𝑒1𝑠1𝑒1𝑠2𝑒2𝑒2]].

= [ψ[𝑒1𝑥1𝑒1𝑥2𝑒1] ψ[𝑒1𝑦1𝑒1𝑦2𝑒1] ψ[𝑒1𝑧1𝑒1𝑧2𝑒1]]. Thus, ψ is a homomorphism.

Define a map ϕ: Q2 ⟶ Q1 as ϕ ([𝑒2𝑥1𝑒2𝑥2𝑒2])= [𝑒1𝑠1𝑒1𝑠2 𝑒2𝑥1𝑒2𝑥2𝑒2𝑒2𝑡1𝑒2𝑡2𝑒1𝑒1] ∀ [𝑒2𝑥1𝑒2𝑥2𝑒2]∈ Q2.

Then ψ ∗ ϕ = 𝐼𝑄1 and     ϕ ∗ ψ = 𝐼𝑄2.
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Conclusion

A  (binary) semigroup is a ternary semigroup but a ternary semigroup 
does not necessarily reduce to  a (binary) semigroup.
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