A New Structure Theorem for Locally Inverse Semigroups

Azeef Muhammed P. A. (with Karl Auinger and Mikhail V. Volkov)

Laboratory of Combinatorial Algebra, Institute of Natural Sciences and Mathematics

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
Introduction		

A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.

Locally Inverse Semigroups ●○○	Nambooripad's Cross-connections	Inverse Semigroups
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000	00	00000
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.

Locally Inverse Semigroups ●○○	Nambooripad's Cross-connections	Inverse Semigroups
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.
- This relies on the fact that we can introduce an additional binary operation on a LI semigroup called the 'sandwich operation'.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.
- This relies on the fact that we can introduce an additional binary operation on a LI semigroup called the 'sandwich operation'.

For
$$e, f \in E(S)$$
 in a regular semigroup S , the sandwich set

$$\mathcal{S}(e, f) = \{ fxe : x \text{ is an inverse of } ef \}.$$

Locally Inverse Semigroups ●○○	Nambooripad's Cross-connections	Inverse Semigroups
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.
- This relies on the fact that we can introduce an additional binary operation on a LI semigroup called the 'sandwich operation'.

For
$$e, f \in E(S)$$
 in a regular semigroup S , the sandwich set

 $\mathcal{S}(e,f) = \{ fxe : x \text{ is an inverse of } ef \}.$

In an LI semigroup, the sandwich set $\mathcal{S}(e, f)$ is a singleton.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.
- This relies on the fact that we can introduce an additional binary operation on a LI semigroup called the 'sandwich operation'.

For
$$e, f \in E(S)$$
 in a regular semigroup S , the sandwich set

 $\mathcal{S}(e,f) = \{ fxe : x \text{ is an inverse of } ef \}.$

- In an LI semigroup, the sandwich set S(e, f) is a singleton.
- Characterising E(S) as a pseudo-semilattice, Nambooripad (1981) gave a structure theorem via inductive pseudo-groupoid.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
Introduction		

- A regular semigroup S is locally inverse (or just LI) if every for each $e \in E(S)$, eSe is an inverse semigroup.
- Also known as pseudo-inverse semigroups.
- LI semigroups form a e-variety of regular semigroups : closed under taking direct products, regular subsemigroups and homomorphic images.
- This relies on the fact that we can introduce an additional binary operation on a LI semigroup called the 'sandwich operation'.

For
$$e, f \in E(S)$$
 in a regular semigroup S , the sandwich set

 $\mathcal{S}(e, f) = \{ fxe : x \text{ is an inverse of } ef \}.$

- In an LI semigroup, the sandwich set S(e, f) is a singleton.
- Characterising E(S) as a pseudo-semilattice, Nambooripad (1981) gave a structure theorem via inductive pseudo-groupoid.
- Pastijn (1982) provided another using groups and semilattices.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

Given a LI semigroup S, the invariant we are concerned is the category $\mathbb{L}(S)$ defined as follows :

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

■ Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

 $v\mathbb{L}(S) = \{Se : e \in E(S)\}.$

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

■ Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

$$v\mathbb{L}(S) = \{Se : e \in E(S)\}.$$

For each $x \in Se$, a morphism from Se to Sf is the function $\rho(e, u, f) : x \mapsto xu$ where $u \in eSf$.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

- Our approach will be via Nambooripad's cross-connection theory.
- Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

$$v\mathbb{L}(S) = \{Se : e \in E(S)\}.$$

- For each $x \in Se$, a morphism from Se to Sf is the function $\rho(e, u, f) \colon x \mapsto xu$ where $u \in eSf$.
- Observe that if $Se \subseteq Sf$, then $\rho(e, e, f)$ will be an inclusion function.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

- Our approach will be via Nambooripad's cross-connection theory.
- Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

$$v\mathbb{L}(S) = \{Se : e \in E(S)\}.$$

- For each $x \in Se$, a morphism from Se to Sf is the function $\rho(e, u, f) \colon x \mapsto xu$ where $u \in eSf$.
- Observe that if $Se \subseteq Sf$, then $\rho(e, e, f)$ will be an inclusion function.
- These inclusions naturally define a partial order on the set of objects of the category L(S).

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

- Our approach will be via Nambooripad's cross-connection theory.
- Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

$$v\mathbb{L}(S) = \{Se : e \in E(S)\}.$$

- For each $x \in Se$, a morphism from Se to Sf is the function $\rho(e, u, f) \colon x \mapsto xu$ where $u \in eSf$.
- Observe that if $Se \subseteq Sf$, then $\rho(e, e, f)$ will be an inclusion function.
- These inclusions naturally define a partial order on the set of objects of the category L(S).
- Since S is LI, we can see that these inclusions have unique right inverses; henceforth called as retractions.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
000		
The category $\mathbb{L}(S)$		

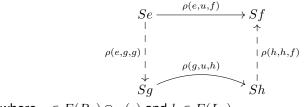
- Our approach will be via Nambooripad's cross-connection theory.
- Given a LI semigroup *S*, the invariant we are concerned is the category L(*S*) defined as follows :

$$v\mathbb{L}(S) = \{Se : e \in E(S)\}.$$

- For each $x \in Se$, a morphism from Se to Sf is the function $\rho(e, u, f) \colon x \mapsto xu$ where $u \in eSf$.
- Observe that if $Se \subseteq Sf$, then $\rho(e, e, f)$ will be an inclusion function.
- These inclusions naturally define a partial order on the set of objects of the category L(S).
- Since S is LI, we can see that these inclusions have unique right inverses; henceforth called as retractions.
- Further, the morphisms in L(S) admit a factorisation in the following manner.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigrou
000		
Unambiguous Category		

Nambooripad's	Cross-connection



where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

Locally Inverse Semigroups

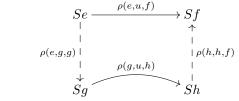
Unambiguous Category

000

Nambooripad's	Cross-connections

Inverse Semigroups

For an arbitrary morphism $\rho(e, u, f)$ in $\mathbb{L}(S)$ from Se to Sf,



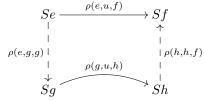
where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

Moreover since *S* is LI, this normal factorisation is unique.

Locally Inverse Semigroups

Unambiguous Category

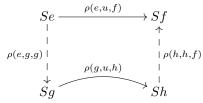
000



where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

- Moreover since *S* is LI, this normal factorisation is unique.
- It is this factorisation which provides the global skeleton for the construction in cross-connection theory.

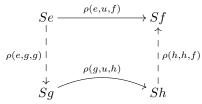
Locally Inverse Semigroups



where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

- Moreover since *S* is LI, this normal factorisation is unique.
- It is this factorisation which provides the global skeleton for the construction in cross-connection theory.
- Initially propounded by Hall (1973) and Grillet (1974).

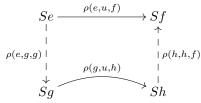
Locally Inverse Semigroups



where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

- Moreover since *S* is LI, this normal factorisation is unique.
- It is this factorisation which provides the global skeleton for the construction in cross-connection theory.
- Initially propounded by Hall (1973) and Grillet (1974).
- Nambooripad (1995) extended this to arbitrary regular semigroups using small categories.

Locally Inverse Semigroups



where $g \in E(R_u) \cap \omega(e)$ and $h \in E(L_u)$.

- Moreover since *S* is LI, this normal factorisation is unique.
- It is this factorisation which provides the global skeleton for the construction in cross-connection theory.
- Initially propounded by Hall (1973) and Grillet (1974).
- Nambooripad (1995) extended this to arbitrary regular semigroups using small categories.
- He characterised L(S) of a regular semigroup S as a normal category, using a set of axioms.

Locally Inverse Semigroups

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

■ Given a normal category *C*, Nambooripad showed that we can associate with it a regular semigroup \widehat{C} .

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

- Given a normal category *C*, Nambooripad showed that we can associate with it a regular semigroup \widehat{C} .
- Similarly, the regular semigroup associated with an unambiguous category is, in fact LI.

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

- Given a normal category *C*, Nambooripad showed that we can associate with it a regular semigroup \widehat{C} .
- Similarly, the regular semigroup associated with an unambiguous category is, in fact LI.

Theorem

A category is unambiguous if and only if it is isomorphic to the category $\mathbb{L}(S)$ for some locally inverse semigroup S.

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

- Given a normal category *C*, Nambooripad showed that we can associate with it a regular semigroup \widehat{C} .
- Similarly, the regular semigroup associated with an unambiguous category is, in fact LI.

Theorem

A category is unambiguous if and only if it is isomorphic to the category $\mathbb{L}(S)$ for some locally inverse semigroup S.

Further, for a given normal category C, the cross-connection theory admit a dual category C* associated with it.

An unambiguous category is a normal category where the morphisms admit a unique normal factorisation and the inclusions split uniquely.

- Given a normal category *C*, Nambooripad showed that we can associate with it a regular semigroup \widehat{C} .
- Similarly, the regular semigroup associated with an unambiguous category is, in fact LI.

Theorem

A category is unambiguous if and only if it is isomorphic to the category $\mathbb{L}(S)$ for some locally inverse semigroup S.

- Further, for a given normal category C, the cross-connection theory admit a dual category C* associated with it.
- The dual C* is defined as a full subcategory of the functor category [C, Set].

The dual \mathcal{C}^* of an unambiguous category \mathcal{C} is also an unambiguous category.

• A cross-connection is a quadruple $(\mathcal{C}, \mathcal{D}; \Gamma, \Delta)$ where $\Gamma \colon \mathcal{D} \to \mathcal{C}^*$ and $\Delta \colon \mathcal{C} \to \mathcal{D}^*$ and satisfying a 'cross-connecting' axiom.

- A cross-connection is a quadruple $(\mathcal{C}, \mathcal{D}; \Gamma, \Delta)$ where $\Gamma \colon \mathcal{D} \to \mathcal{C}^*$ and $\Delta \colon \mathcal{C} \to \mathcal{D}^*$ and satisfying a 'cross-connecting' axiom.
- Given such a cross-connection, we can obtain a cross-connection semigroup as a sub-direct product of the LI semigroups C and D.

- A cross-connection is a quadruple $(\mathcal{C}, \mathcal{D}; \Gamma, \Delta)$ where $\Gamma \colon \mathcal{D} \to \mathcal{C}^*$ and $\Delta \colon \mathcal{C} \to \mathcal{D}^*$ and satisfying a 'cross-connecting' axiom.
- Since LI semigroups form an e-variety, a subdirect product of two LI semigroups is LI.

- A cross-connection is a quadruple $(\mathcal{C}, \mathcal{D}; \Gamma, \Delta)$ where $\Gamma: \mathcal{D} \to \mathcal{C}^*$ and $\Delta: \mathcal{C} \to \mathcal{D}^*$ and satisfying a 'cross-connecting' axiom.
- Since LI semigroups form an e-variety, a subdirect product of two LI semigroups is LI.
- Hence the semigroup arising from a cross-connected pair of unambiguous categories is LI.

The dual \mathcal{C}^* of an unambiguous category \mathcal{C} is also an unambiguous category.

- A cross-connection is a quadruple $(\mathcal{C}, \mathcal{D}; \Gamma, \Delta)$ where $\Gamma: \mathcal{D} \to \mathcal{C}^*$ and $\Delta: \mathcal{C} \to \mathcal{D}^*$ and satisfying a 'cross-connecting' axiom.
- Since LI semigroups form an e-variety, a subdirect product of two LI semigroups is LI.
- Hence the semigroup arising from a cross-connected pair of unambiguous categories is LI.

Theorem

The category LIS of locally inverse semigroups is equivalent to the category CUC of cross-connections of unambiguous categories.

Inverse semigroups form one of the most important classes of semigroups.

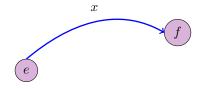
- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.

Locally	Semigroups	
000		

- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.

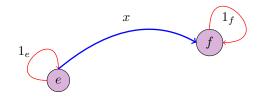
ESN Theorem	
Locally Inverse Semigroups	Nambooripad's Cross-con

- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



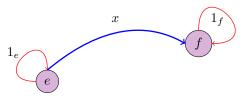
ECN Theorem	
Locally Inverse Semigroups	Nambooripad's Cross-c

- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



ESN Theorem	
Locally Inverse Semigroups	Nambooripad's Cross-connection

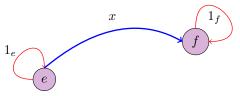
- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



Thus, we obtain a groupoid with a semilattice as the vertex set.

ECN Theorem	
Locally Inverse Semigroups	Nambooripad's Cross

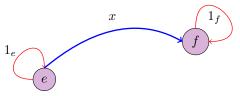
- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



- Thus, we obtain a groupoid with a semilattice as the vertex set.
- Further, the morphisms in groupoid respect the order structure of the vertices.

ECN Theorem	
000	00
Locally Inverse Semigroups	Nambooripad's

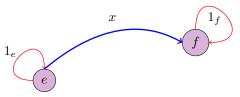
- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



- Thus, we obtain a groupoid with a semilattice as the vertex set.
- Further, the morphisms in groupoid respect the order structure of the vertices. That is, each arrow can be restricted (corestricted) to idempotents below its domain (range).

FON These	
000	00
Locally Inverse Semigroups	Nambooripa

- Inverse semigroups form one of the most important classes of semigroups.
- There are several structure theorems using different approaches.
- One relies on the fact that any element x of an inverse semigroup can be realised as a morphism from $xx^{-1} = e$ to $x^{-1}x = f$.



- Thus, we obtain a groupoid with a semilattice as the vertex set.
- Further, the morphisms in groupoid respect the order structure of the vertices. That is, each arrow can be restricted (corestricted) to idempotents below its domain (range).
- Such an associated groupoid is called an inductive groupoid.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

The category IS of inverse semigroups is isomorphic to the category IG of inductive groupoids.

Now, we proceed to further specialise our previous results.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.
- We begin by analysing the category $\mathbb{L}(S)$, where *S* is an inverse.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.
- We begin by analysing the category $\mathbb{L}(S)$, where S is an inverse.
- Here, since E(S) forms a semilattice, the partial order from the inclusions also forms a semilattice.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.
- We begin by analysing the category $\mathbb{L}(S)$, where *S* is an inverse.
- Here, since E(S) forms a semilattice, the partial order from the inclusions also forms a semilattice.
- We abstract such a category as an so-category.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.
- We begin by analysing the category $\mathbb{L}(S)$, where *S* is an inverse.
- Here, since E(S) forms a semilattice, the partial order from the inclusions also forms a semilattice.
- We abstract such a category as an so-category.
- Identifying a couple more 'local' properties associated with the inverse semigroup, we define define inversive categories as specialisations of unambiguous categories.

Theorem (Ehresmann-Schein-Nambooripad (ESN) Theorem)

- Now, we proceed to further specialise our previous results.
- This leads to a major simplification : we obtain the structure theorem using a single category, parallel to the ESN theorem.
- We begin by analysing the category $\mathbb{L}(S)$, where *S* is an inverse.
- Here, since E(S) forms a semilattice, the partial order from the inclusions also forms a semilattice.
- We abstract such a category as an so-category.
- Identifying a couple more 'local' properties associated with the inverse semigroup, we define define inversive categories as specialisations of unambiguous categories.
- An inversive category is the abstraction of the category L(S) of the principal left ideals of an inverse semigroup S.

Inversive category

Definition

- A category C is said to be an inversive category if :
 - **1** C is a so-category;
 - **2** every inclusion in *C* splits uniquely;
 - **3** every morphism in C admits a unique normal factorisation;
 - 4 every morphism in $\langle C \rangle$ has an inversive factorisation;
 - **5** for each $c \in vC$, there is a unique inversive idempotent cone with apex c.

Inversive category

Definition

- A category C is said to be an inversive category if :
 - **1** C is a so-category;
 - **2** every inclusion in *C* splits uniquely;
 - **3** every morphism in C admits a unique normal factorisation;
 - **4** every morphism in $\langle C \rangle$ has an inversive factorisation;
 - **5** for each $c \in vC$, there is a unique inversive idempotent cone with apex c.
 - For an inversive category C, using 'inversive cones' we identify the suitable inverse subsemigroup C of the regular semigroup C.

Inversive category

Definition

- A category C is said to be an inversive category if :
 - **1** C is a so-category;
 - **2** every inclusion in *C* splits uniquely;
 - **3** every morphism in C admits a unique normal factorisation;
 - **4** every morphism in $\langle C \rangle$ has an inversive factorisation;
 - **5** for each $c \in vC$, there is a unique inversive idempotent cone with apex c.
 - For an inversive category C, using 'inversive cones' we identify the suitable inverse subsemigroup C of the regular semigroup C.

Theorem

A category is inversive if and only if it is isomorphic to the category $\mathbb{L}(S)$ for some inverse semigroup S.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
Inversive category		

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
Inversive category		

Theorem

The category IS of inverse semigroups is equivalent to the category IC of inversive categories.

Locally Inverse Semigroups	Nambooripad's Cross-connections 00	Inverse Semigroups
Inversive category		

Theorem

The category IS of inverse semigroups is equivalent to the category IC of inversive categories.

Observe that, here, we do not need the cross-connections to complete the structure theorem.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
Inversive category		

Theorem

The category IS of inverse semigroups is equivalent to the category IC of inversive categories.

- Observe that, here, we do not need the cross-connections to complete the structure theorem.
- Now, given an inversive category *C*, if we consider only its isomorphisms, we obtain a sub-groupoid *G*_{*C*}.

Locally Inverse Semigroups	Nambooripad's Cross-connections 00	Inverse Semigroups
Inversive category		

Theorem

The category IS of inverse semigroups is equivalent to the category IC of inversive categories.

- Observe that, here, we do not need the cross-connections to complete the structure theorem.
- Now, given an inversive category *C*, if we consider only its isomorphisms, we obtain a sub-groupoid *G*_{*C*}.
- Further, we can define a partial order ≤_C and restrictions / co-restrictions in this category.

Locally Inverse Semigroups	Inverse Semigroups
Inversive category	

Theorem

The category IS of inverse semigroups is equivalent to the category IC of inversive categories.

- Observe that, here, we do not need the cross-connections to complete the structure theorem.
- Now, given an inversive category *C*, if we consider only its isomorphisms, we obtain a sub-groupoid *G*_{*C*}.
- Further, we can define a partial order ≤_C and restrictions / co-restrictions in this category.

Proposition

If C is an inversive category, $(\mathcal{G}_{\mathcal{C}}, \leq_{\mathcal{C}})$ is an inductive groupoid.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

■ Conversely, given an inductive groupoid (G, ≤), we can 'build' the inversive category C_G associated with it.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (G, ≤), we can 'build' the inversive category C_G associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (*G*, ≤), we can 'build' the inversive category *C*_{*G*} associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.
- The category $\mathcal{P}_{\mathcal{G}}$ shall take care of the inclusions.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (*G*, ≤), we can 'build' the inversive category *C*_{*G*} associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.
- The category $\mathcal{P}_{\mathcal{G}}$ shall take care of the inclusions.
- The second category $\mathcal{Q}_{\mathcal{G}}$ is responsible for the retractions.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (*G*, ≤), we can 'build' the inversive category *C*_{*G*} associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.
- The category $\mathcal{P}_{\mathcal{G}}$ shall take care of the inclusions.
- The second category $\mathcal{Q}_{\mathcal{G}}$ is responsible for the retractions.
- Finally, we can obtain $C_{\mathcal{G}} = Q_{\mathcal{G}} \otimes \mathcal{G} \otimes \mathcal{P}_{\mathcal{G}}$.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (*G*, ≤), we can 'build' the inversive category *C*_{*G*} associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.
- The category $\mathcal{P}_{\mathcal{G}}$ shall take care of the inclusions.
- The second category Q_G is responsible for the retractions.
- Finally, we can obtain $C_{\mathcal{G}} = Q_{\mathcal{G}} \otimes \mathcal{G} \otimes \mathcal{P}_{\mathcal{G}}$.

Proposition

If \mathcal{G} is an inductive groupoid, then $(\mathcal{C}_{\mathcal{G}}, \mathcal{P}_{\mathcal{G}})$ is an inversive category.

Locally Inverse Semigroups	Nambooripad's Cross-connections	Inverse Semigroups
		00000
Inversive category		

- Conversely, given an inductive groupoid (*G*, ≤), we can 'build' the inversive category *C*_{*G*} associated with it.
- This is done by first building two additional categories : $\mathcal{P}_{\mathcal{G}}$ and $\mathcal{Q}_{\mathcal{G}}$ from the underlying semilattice $v\mathcal{G}$.
- The category $\mathcal{P}_{\mathcal{G}}$ shall take care of the inclusions.
- The second category Q_G is responsible for the retractions.
- Finally, we can obtain $C_{\mathcal{G}} = Q_{\mathcal{G}} \otimes \mathcal{G} \otimes \mathcal{P}_{\mathcal{G}}$.

Proposition

If \mathcal{G} is an inductive groupoid, then $(\mathcal{C}_{\mathcal{G}}, \mathcal{P}_{\mathcal{G}})$ is an inversive category.

Theorem

The category IC of inversive categories is equivalent to the category IG of inductive groupoids.