An ω -reducibility of V-pointlike pairs for pseudovarieties of ordered monoids V representing low levels of concatenation hierarchies

Jana Bartoňová

Masaryk University, Brno, Czech Republic

An ω -reducibility of V-pointlike pairs for pseudovarieties of ordered monoids V representing low levels of concatenation hierarchies

- Oncatenation hierarchies of regular languages
- Pseudovarieties of ordered monoids representing levels of concatenation hierarchies
- Over the second seco
- **4** ω -reducibility of V-pointlike pairs
- O New result

Regular Languages

- A ... finite set (alphabet, elements of A are called letters)
- A* ... a free monoid over A, with the operation of concatenation; elements of A* are called words; neutral element e (empty word)
- $L \subseteq A^*$... a language over A
- Regular language \dots a language created from letters $a \in A$ and ϵ using operations
 - union,
 - concatenation,
 - iteration.
- The set of all regular languages is closed also under complementation (and hence also under intersection):

$$L \cap K = (L^{\mathrm{C}} \cup K^{\mathrm{C}})^{\mathrm{C}}.$$

Concatenation Hierarchies

 $C_0 \ldots$ a given set of regular languages (over an alphabet A) $C_{n+1/2} = Pol(C_n) = Pol(\{L^C \mid L \in C_{n-1/2}\})$ \ldots Polynomial closure = closure under marked concatenation $((K, L) \mapsto K \cdot a \cdot L)$ and union $C_{n+1} = B(C_{n+1/2}) \ldots$ Boolean closure (closure under union and complementation)

Example (Straubing-Thérien hierarchy)

•
$$\mathcal{C}_0 := \{A^*, \emptyset\}$$

 $\bullet \ \mathcal{C}_{1/2} = \textit{Pol}(\mathcal{C}_0) \ \ldots \ \ \text{finite unions of languages of the form}$

$$A^*a_1A^*\ldots a_nA^*$$
 where $a_i\in A$

• $\mathcal{C}_1 = B(\mathcal{C}_{1/2}) \dots$ finite Boolean combinations of languages of the form

$$A^*a_1A^*\ldots a_nA^*$$
 where $a_i\in A$

We are given \mathcal{C}_0 and $m \in \frac{\mathbb{N}_0}{2}$.

MEMBERSHIP PROBLEM for C_m :

- Input: A regular language L.
- *Question:* Does *L* belong to *C_m*?

Pseudovarieties of (Ordered) Monoids

- For every finite alphabet A, have a set of regular languages
 C₀(A).
- If the sets $C_0(A)$ satisfy some nice properties, they form a *variety* of regular languages.
 - Then
 - full levels of conc. hierarchy C_n = varieties of regular languages \leftrightarrow *pseudovarieties* V_n of finite monoids,
 - half levels of conc. hierarchy $C_{n+1/2} = positive$ varieties of regular languages \leftrightarrow pseudovarieties $V_{n+1/2}$ of finite ordered monoids.

Example (Straubing-Thérien hierarchy)

- $\mathcal{C}_0(A) = \{A^*, \emptyset\} \dots V_0 = \text{ trivial pseudovariety}$
- $C_{1/2}(A) = Pol(C_0(A)) \dots V_{1/2} = [[1 \le a]]$
- C₁(A) = B(C_{1/2}(A)) ... V₁ = pseudovariety of J-trivial monoids (Simon, 1975)

The membership problem for levels of concatenation hierarchies

 How to decide whether a given regular language belongs to C_m for given C₀ and m ∈ ^{N₀}/₂?

... corresponds to the membership problem for pseudovarieties of finite (ordered) monoids:

• How to decide whether a given finite (ordered) monoid belongs to V_m for given V_0 and $m \in \frac{\mathbb{N}_0}{2}$?

Pointlike Pairs for Half Levels

Theorem (Branco, Pin, 2009, Place, Zeitoun, 2014, 2017, Almeida, Bartoňová, Klíma, Kunc, 2015)

$$\mathbf{V}_{n+1/2} = [[x^{\omega+1} \le x^{\omega} y x^{\omega} \mid \mathbf{V}_{n-1/2} \models y \le x]]$$

- $x, y \in \overline{\Omega}_A M$, where $\overline{\Omega}_A M$ is a free profinite monoid over some finite alphabet A,
- $V_{n-1/2} \models y \le x \Leftrightarrow$ for every finite ordered monoid $M \in V_{n-1/2}$ and for every continuous homomorphism $\varphi : \overline{\Omega}_A M \to M$, we have $\varphi(y) \le \varphi(x)$.

So to decide whether $M \in V_{n+1/2}$, it suffices to compute the set

$$\begin{split} \mathbf{V}_{\boldsymbol{n}-\frac{1}{2}}[\boldsymbol{M}] &:= \big\{ (s,t) \in \boldsymbol{M} \times \boldsymbol{M} \mid \exists x, y \in \overline{\Omega}_{A} \mathbf{M}, \\ \exists \text{ cont. hom. } \varphi \colon \overline{\Omega}_{A} \mathbf{M} \to \boldsymbol{M} \colon s = \varphi(y), t = \varphi(x), \mathbf{V}_{\boldsymbol{n}-\frac{1}{2}} \models y \leq x \big\}. \\ \dots \text{ the set of all "} \mathbf{V}_{\boldsymbol{n}-\frac{1}{2}}\text{-pointlike pairs" (an ordered analogue of } \end{split}$$

V-pointlike pairs, where V is a pseudovariety of ordinary monoids).

$$\begin{split} \mathbf{V}_{\boldsymbol{n}-\frac{1}{2}}[\boldsymbol{M}] &:= \big\{ (s,t) \in \boldsymbol{M} \times \boldsymbol{M} \mid \exists x, y \in \overline{\Omega}_{\boldsymbol{A}} \mathbf{M}, \\ \exists \text{ cont. hom. } \varphi \colon \overline{\Omega}_{\boldsymbol{A}} \mathbf{M} \to \boldsymbol{M} \colon s = \varphi(y), t = \varphi(x), \mathbf{V}_{\boldsymbol{n}-\frac{1}{2}} \models y \leq x \big\}. \end{split}$$

By Almeida, Steinberg (2000), it suffices to prove

- the decidability of the ω-inequality (= inequality of ω-words) problem for V_{n-1/2} (done by Almeida, Klíma, Kunc, 2018, for conc. hierarchies of *star-free* languages),
- ② an ω -reducibility of $V_{n-\frac{1}{2}}[M]$, i.e. that the following property holds:

$$\begin{split} \mathrm{V}_{n-\frac{1}{2}}[M] &= \big\{ (s,t) \in M \times M \mid \exists x, y \in \mathbf{\Omega}^{\omega}_{\mathbf{A}} \mathbf{M}, \\ \exists \text{ cont. hom. } \varphi \colon \Omega^{\omega}_{\mathbf{A}} \mathbf{M} \to M \colon s = \varphi(y), t = \varphi(x), \mathrm{V}_{n-\frac{1}{2}} \models y \leq x \big\}. \end{split}$$

Known and New Results

- The sets of V_m-pointlike pairs are known to be algorithmically computable for m = 0, ¹/₂, 1, ³/₂, where V₀ is a locally finite pseudovariety. (Place, Zeitoun, 2017 proof as elementary as possible done in locally finite pseudovarieties forming a stratification of pseudovariety V_m.)
- By use of ideas from a proof of corectness of an algorithm computing V_{1/2}[M] by Place, Zeitoun we have proved the ω-reducibility of this set. (using some "profinite tools")

Theorem (J.B.)

Let V_0 be a locally finite pseudovariety, M a finite monoid. Then the set $V_{\frac{1}{2}}[M]$ of $V_{1/2}$ -pointlike pairs of M is ω -reducible.

Theorem (J.B.)

Let V_0 be a locally finite pseudovariety, M a finite monoid. Then the set $V_{\frac{1}{2}}[M]$ of $V_{1/2}$ -pointlike pairs of M is ω -reducible.

Theorem (Branco, Pin, 2009, Place, Zeitoun, 2014, 2017, ...)

$$\mathbf{V}_{n+1/2} = \left[\left[x^{\omega+1} \le x^{\omega} y x^{\omega} \mid \mathbf{V}_{n-1/2} \models y \le x \right] \right]$$

Corollary (J.B.)

Let V_0 be a locally finite pseudovariety. Then

 $V_{3/2} = [[x^{\omega+1} \le x^{\omega} y x^{\omega} \mid \exists \text{ finite } A \colon x, y \in \Omega^{\omega}_A M, V_{1/2} \models y \le x]].$

In particular, the pseudovariety $V_{3/2}$ has a basis of inequalities of $\omega\text{-words.}$

Case of Straubing-Thérien Hierarchy

 $\rm W_0\ldots$ trivial pseudovariety It is known that $\rm W_{3/2}=\rm V_{1/2},$ where $\rm V_0=Sl$ (the pseudovariety of semilattices), which is still locally finite.

Corollary (J.B.)

$$W_{\frac{5}{2}} = [[x^{\omega+1} \le x^{\omega} y x^{\omega} \mid \exists \text{ finite } A \colon x, y \in \Omega^{\omega}_{A} M, W_{\frac{3}{2}} \models y \le x]].$$

In particular, the pseudovariety $W_{5/2}$ of ST-hierarchy has a basis of inequalities of $\omega\text{-words}.$

Further, using a characterization of $\rm W_2$ of ST-hierararchy by a set of pseudoidentities parametrized by a generalization of $\rm W_{3/2}$ -pointlike pairs (Place, Zeitoun, 2017), we obtain the following.

Corollary (J.B.)

The pseudovariety W_2 of ST-hierarchy has a basis of pseudoidentities of ω -words.

• Generalization of our profinite approach to obtain easier/ shorter proofs and to extend it to higher levels of concatenation hierarchies. Thank you for your attention.