Amalgams and HNN Extensions Of Inverse Semigroups Paul Bennett, Singapore June 6, 2019 ## **Amalgams** • An amalgam $[S_1, S_2; U]$ consists of inverse semigroups S_1 and S_2 that intersect in an inverse subsemigroup U. # **Amalgams** - An amalgam $[S_1, S_2; U]$ consists of inverse semigroups S_1 and S_2 that intersect in an inverse subsemigroup U. - Hall (1975) showed that S_1 and S_2 are embedded into the amalgamated free product $S_1 *_U S_2$, with their images intersecting in U. Special cases of $S_1 *_U S_2$ have been investigated: • Haataja, Margolis and Meakin (1996). - Haataja, Margolis and Meakin (1996). - Cherubini, Meakin and Piochi (1997–2005). - Haataja, Margolis and Meakin (1996). - Cherubini, Meakin and Piochi (1997-2005). - Bennett (1997). - Haataja, Margolis and Meakin (1996). - Cherubini, Meakin and Piochi (1997–2005). - Bennett (1997). - Stephen (1998). - Haataja, Margolis and Meakin (1996). - Cherubini, Meakin and Piochi (1997–2005). - Bennett (1997). - Stephen (1998). - Numerous papers by Cherubini, Jajcayová, Mazzuchelli, Nuccio and Rodaro (2008–2015). Special cases of $S_1 *_U S_2$ have been investigated: - Haataja, Margolis and Meakin (1996). - Cherubini, Meakin and Piochi (1997–2005). - Bennett (1997). - Stephen (1998). - Numerous papers by Cherubini, Jajcayová, Mazzuchelli, Nuccio and Rodaro (2008–2015). A structure theory for the general case still does not exist. The current research attempts to solve this. # Lower Bounded Subsemigroups • We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$. ## Lower Bounded Subsemigroups • We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$. # Lower Bounded Subsemigroups • We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$. • Similarly, we say that U is *lower bounded* in S_2 if $u \ge e$, where $u \in U$ and $e \in E(S_2)$, implies $u \ge f \ge e$, for some $f \in E(U)$. #### Results If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following. #### Results If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following. • A description of the Schützenberger automata of $S_1 *_U S_2$. #### Results If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following. - A description of the Schützenberger automata of $S_1 *_U S_2$. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$. #### Results If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following. - A description of the Schützenberger automata of $S_1 *_U S_2$. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$. - Conditions for $S_1 *_U S_2$ to have decidable word problem. #### Results If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following. - A description of the Schützenberger automata of $S_1 *_U S_2$. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$. - Conditions for $S_1 *_U S_2$ to have decidable word problem. The results generalise Bennett's papers on lower bounded amalgams (1997). # The Schützenberger Graphs Of $S_1 *_U S_2$ # The Schützenberger Graphs Of $S_1 *_U S_2$ ### Assuming no conditions on U: • Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$. - Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$. - Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i=1,2. - Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$. - Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i = 1, 2. - Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2. - Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$. - Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i = 1, 2. - Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2. - Define $Z = (U *_{E(U)} M(U))/\mu_U$, similarly. - Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$. - Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i=1,2. - Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2. - Define $Z = (U *_{E(U)} M(U))/\mu_U$, similarly. - All definitions of μ_U agree on $U *_{E(U)} M(U)$. #### Results If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then: #### Results If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then: • Z is embedded into T_1 and T_2 . #### Results If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then: - Z is embedded into T_1 and T_2 . - Z is lower bounded in T_1 and T_2 . #### Results If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then: - Z is embedded into T_1 and T_2 . - Z is lower bounded in T_1 and T_2 . - $S_1 *_U S_2$ is embedded into $T_1 *_Z T_2$. #### Corollaries We can reprove the literature, in particular when S_1 , S_2 are finite: #### Corollaries We can reprove the literature, in particular when S_1 , S_2 are finite: • (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem. #### Corollaries We can reprove the literature, in particular when S_1 , S_2 are finite: - (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem. - (Rodaro 2010) We have necessary and sufficient conditions for $S_1 *_U S_2$ to be completely semisimple and sufficient conditions for finite \mathcal{R} -classes. #### Corollaries We can reprove the literature, in particular when S_1 , S_2 are finite: - (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem. - (Rodaro 2010) We have necessary and sufficient conditions for S₁ *_U S₂ to be completely semisimple and sufficient conditions for finite R-classes. - (Cherubini, Jajcayová and Rodaro 2015) A maximal subgroup of $S_1 *_U S_2$ is the fundamental group of a graph of groups, defined by the \mathcal{D} -classes of S_1 , S_2 and U, or is a homomorphic image of a subgroup of S_1 or S_2 . ### **HNN Extensions** • Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S. #### **HNN Extensions** - Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S. - If A_1 and A_2 are not monoids then we adjoin a shared identity 1 to A_1 , A_2 and S. Let e_i be the identity of A_i , for i = 1, 2. #### **HNN Extensions** - Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S. - If A_1 and A_2 are not monoids then we adjoin a shared identity 1 to A_1 , A_2 and S. Let e_i be the identity of A_i , for i = 1, 2. - Yamamura (1997) showed that the HNN extension $S^* = [S; A_1, A_2; \phi]$ contains a copy of S and an element t, with $tt^{-1} = e_1$, $t^{-1}t = e_2$ and $t^{-1}at = (a)\phi$, for all $a \in A_1$. Special cases of $S^* = [S; A_1, A_2; \phi]$ have been investigated: • Yamamura (1997-2006). - Yamamura (1997-2006). - Jajcayová (1997). - Yamamura (1997-2006). - Jajcayová (1997). - Cherubini and Rodaro (2008–2011). - Yamamura (1997-2006). - Jajcayová (1997). - Cherubini and Rodaro (2008–2011). - Ayyash (2014). Special cases of $S^* = [S; A_1, A_2; \phi]$ have been investigated: - Yamamura (1997-2006). - Jajcayová (1997). - Cherubini and Rodaro (2008–2011). - Ayyash (2014). A structure theory for the general case still does not exist. The current research attempts to solve this and is joint work with Tatiana Jajcayová. #### Results If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following. #### Results If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following. • A description of the Schützenberger automata of S*. #### Results If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following. - A description of the Schützenberger automata of S*. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* . #### Results If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following. - A description of the Schützenberger automata of S*. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* . - Conditions for S* to have decidable word problem. #### Results If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following. - A description of the Schützenberger automata of S*. - Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* . - Conditions for S* to have decidable word problem. The results generalise Jaycayová's PhD on lower bounded HNN extensions (1997). # The Schützenberger Graphs Of $S^* = [S; A_1, A_2; \phi]$ # The Schützenberger Graphs Of $S^* = [S; A_1, A_2; \phi]$ Assuming no conditions on A_1 and A_2 : • Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2. - Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2. - Let μ_{A_i} be the least congruence on $S*_{E(A_i)}M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S*_{E(A_i)}M(A_i))$, for i=1,2. - Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2. - Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2. - Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2. - Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2. - Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2. - Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2. - Define $Z_i = (A_i *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2, similarly. - Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate. - Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2. - Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2. - Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2. - Define $Z_i = (A_i *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2, similarly. - We have an isomorphism $\pi: Z_1 \to Z_2$ and S is embedded into T_1 and T_2 . Put $T = T_1 *_S T_2$. #### Results If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then: #### Results If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then: • Z_1 and Z_2 are embedded into T. #### Results If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then: - Z_1 and Z_2 are embedded into T. - Z_1 and Z_2 are lower bounded in T. #### Results If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then: - Z_1 and Z_2 are embedded into T. - Z_1 and Z_2 are lower bounded in T. - S^* is embedded into $T^* = [T; Z_1, Z_2; \pi]$. #### Corollaries We can reprove the literature, in particular when S is finite: #### Corollaries We can reprove the literature, in particular when S is finite: • (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem. #### Corollaries We can reprove the literature, in particular when S is finite: - (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem. - (Ayyash 2014) Necessary and sufficient conditions are given for S^* to be completely semisimple. #### Corollaries We can reprove the literature, in particular when S is finite: - (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem. - (Ayyash 2014) Necessary and sufficient conditions are given for S* to be completely semisimple. - (Ayyash 2014) A maximal subgroup of S^* is either the fundamental group of a graph of groups, defined by the \mathcal{D} -classes of S, A_1 and A_2 , or is a homomorphic image of a subgroup of S. Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i . Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i . • Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$. Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i . - Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$. - Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$. Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i . - Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$. - Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$. We can give an analogue of a well-known group theory result by Higman, Neumann and Neumann (1949). Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i . - Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$. - Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$. We can give an analogue of a well-known group theory result by Higman, Neumann and Neumann (1949). #### **HNN** Theorem The HNN extension S^* is embedded onto the inverse subsemigroup of $S_1 *_{U_1 \cong U_2} S_2$ generated by S and $t = x_1 x_2$. ## Sketch Of Proof, Part 1 / 4 A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$: • Black circles represent Schützenberger graphs of S. A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$: - Black circles represent Schützenberger graphs of S. - Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$. A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$: - ullet Black circles represent Schützenberger graphs of S. - Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$. - Arrows are paths labeled by S or $x_1^{-1}A_1x_1$, dots are vertices. A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$: - Black circles represent Schützenberger graphs of S. - Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$. - Arrows are paths labeled by S or $x_1^{-1}A_1x_1$, dots are vertices. - $s_1, s_2, s_3 \in S$, $g_1, g_2 \in E(S)$, $a_1 \in A_1$, $f_1, f_2, f_3 \in E(A_1)$. • Replace the green circles by the corresponding Schützenberger graphs of $S * FIM(x_1)$. • Close the graph relative to the relations $e_1 = x_1 x_1^{-1}$. - Close the graph relative to the relations $e_1 = x_1 x_1^{-1}$. - We obtain a Schützenberger graph of $S_1 = S *_{\{e_1\}} FIM(x_1)$. • The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$. - The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$. - Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$. - The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$. - Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$. - We have an amalgam $[S_1, S_2; U_1 \cong U_2]$. - The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$. - Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$. - We have an amalgam $[S_1, S_2; U_1 \cong U_2]$. - The natural map $\theta: S^* \to S_1 *_{U_1 \cong U_2} S_2$,, extending $S \to S: s \to s$ and $t \to t = x_1 x_2$ can be shown to be an embedding, by universal considerations. - The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$. - Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$. - We have an amalgam $[S_1, S_2; U_1 \cong U_2]$. - The natural map $\theta: S^* \to S_1 *_{U_1 \cong U_2} S_2$,, extending $S \to S: s \to s$ and $t \to t = x_1 x_2$ can be shown to be an embedding, by universal considerations. - This completes the proof. • If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension. - If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension. - If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original. - If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension. - If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original. - We can study any amalgam / HNN of inverse semigroups. - If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension. - If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original. - We can study any amalgam / HNN of inverse semigroups. - Results from the literature can be confirmed. - If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension. - If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original. - We can study any amalgam / HNN of inverse semigroups. - Results from the literature can be confirmed. - We can prove analogues of group theory results, such as the HNN embedding theorem.