Amalgams and HNN Extensions Of Inverse Semigroups

Paul Bennett, Singapore

June 6, 2019

Amalgams

• An amalgam $[S_1, S_2; U]$ consists of inverse semigroups S_1 and S_2 that intersect in an inverse subsemigroup U.

Amalgams

- An amalgam $[S_1, S_2; U]$ consists of inverse semigroups S_1 and S_2 that intersect in an inverse subsemigroup U.
- Hall (1975) showed that S_1 and S_2 are embedded into the amalgamated free product $S_1 *_U S_2$, with their images intersecting in U.

Special cases of $S_1 *_U S_2$ have been investigated:

• Haataja, Margolis and Meakin (1996).

- Haataja, Margolis and Meakin (1996).
- Cherubini, Meakin and Piochi (1997–2005).

- Haataja, Margolis and Meakin (1996).
- Cherubini, Meakin and Piochi (1997-2005).
- Bennett (1997).

- Haataja, Margolis and Meakin (1996).
- Cherubini, Meakin and Piochi (1997–2005).
- Bennett (1997).
- Stephen (1998).

- Haataja, Margolis and Meakin (1996).
- Cherubini, Meakin and Piochi (1997–2005).
- Bennett (1997).
- Stephen (1998).
- Numerous papers by Cherubini, Jajcayová, Mazzuchelli, Nuccio and Rodaro (2008–2015).

Special cases of $S_1 *_U S_2$ have been investigated:

- Haataja, Margolis and Meakin (1996).
- Cherubini, Meakin and Piochi (1997–2005).
- Bennett (1997).
- Stephen (1998).
- Numerous papers by Cherubini, Jajcayová, Mazzuchelli, Nuccio and Rodaro (2008–2015).

A structure theory for the general case still does not exist. The current research attempts to solve this.

Lower Bounded Subsemigroups

• We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$.

Lower Bounded Subsemigroups

• We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$.

Lower Bounded Subsemigroups

• We say that U is *lower bounded* in S_1 if $u \ge e$, where $u \in U$ and $e \in E(S_1)$, implies $u \ge f \ge e$, for some $f \in E(U)$.

• Similarly, we say that U is *lower bounded* in S_2 if $u \ge e$, where $u \in U$ and $e \in E(S_2)$, implies $u \ge f \ge e$, for some $f \in E(U)$.

Results

If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following.

Results

If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following.

• A description of the Schützenberger automata of $S_1 *_U S_2$.

Results

If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following.

- A description of the Schützenberger automata of $S_1 *_U S_2$.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$.

Results

If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following.

- A description of the Schützenberger automata of $S_1 *_U S_2$.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$.
- Conditions for $S_1 *_U S_2$ to have decidable word problem.

Results

If $[S_1, S_2; U]$ is an amalgam, where U is lower bounded in S_1 and S_2 , then we have the following.

- A description of the Schützenberger automata of $S_1 *_U S_2$.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of $S_1 *_U S_2$.
- Conditions for $S_1 *_U S_2$ to have decidable word problem.

The results generalise Bennett's papers on lower bounded amalgams (1997).

The Schützenberger Graphs Of $S_1 *_U S_2$

The Schützenberger Graphs Of $S_1 *_U S_2$

Assuming no conditions on U:

• Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.

- Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$.

- Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$.
- Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i=1,2.

- Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$.
- Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i = 1, 2.
- Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2.

- Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$.
- Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i = 1, 2.
- Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2.
- Define $Z = (U *_{E(U)} M(U))/\mu_U$, similarly.

- Let M(U) be the semilattice of all closed inverse submonoids of U. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle u \rangle$ be the closed inverse submonoid of U generated by $u \in U$.
- Let μ_U be the least congruence on $S_i *_{E(U)} M(U)$ such that $g\mu_U \leq u\mu_U$ if and only if $g\mu_U \leq \langle u \rangle \mu_U$, for all $u \in U$ and $g \in E(S_i *_{E(U)} M(U))$, for i=1,2.
- Put $T_i = (S_i *_{E(U)} M(U))/\mu_U$, for i = 1, 2.
- Define $Z = (U *_{E(U)} M(U))/\mu_U$, similarly.
- All definitions of μ_U agree on $U *_{E(U)} M(U)$.

Results

If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then:

Results

If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then:

• Z is embedded into T_1 and T_2 .

Results

If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then:

- Z is embedded into T_1 and T_2 .
- Z is lower bounded in T_1 and T_2 .

Results

If $[S_1, S_2; U]$ is any amalgam of inverse semigroups then:

- Z is embedded into T_1 and T_2 .
- Z is lower bounded in T_1 and T_2 .
- $S_1 *_U S_2$ is embedded into $T_1 *_Z T_2$.

Corollaries

We can reprove the literature, in particular when S_1 , S_2 are finite:

Corollaries

We can reprove the literature, in particular when S_1 , S_2 are finite:

• (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem.

Corollaries

We can reprove the literature, in particular when S_1 , S_2 are finite:

- (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem.
- (Rodaro 2010) We have necessary and sufficient conditions for $S_1 *_U S_2$ to be completely semisimple and sufficient conditions for finite \mathcal{R} -classes.

Corollaries

We can reprove the literature, in particular when S_1 , S_2 are finite:

- (Cherubini, Meakin and Piochi 2005) If S_1 and S_2 are finitely presented then $S_1 *_U S_2$ has decidable word problem.
- (Rodaro 2010) We have necessary and sufficient conditions for S₁ *_U S₂ to be completely semisimple and sufficient conditions for finite R-classes.
- (Cherubini, Jajcayová and Rodaro 2015) A maximal subgroup of $S_1 *_U S_2$ is the fundamental group of a graph of groups, defined by the \mathcal{D} -classes of S_1 , S_2 and U, or is a homomorphic image of a subgroup of S_1 or S_2 .

HNN Extensions

• Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S.

HNN Extensions

- Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S.
- If A_1 and A_2 are not monoids then we adjoin a shared identity 1 to A_1 , A_2 and S. Let e_i be the identity of A_i , for i = 1, 2.

HNN Extensions

- Let S be an inverse semigroup and let $\phi:A_1\to A_2$ be an isomorphism between inverse subsemigroups of S.
- If A_1 and A_2 are not monoids then we adjoin a shared identity 1 to A_1 , A_2 and S. Let e_i be the identity of A_i , for i = 1, 2.
- Yamamura (1997) showed that the HNN extension $S^* = [S; A_1, A_2; \phi]$ contains a copy of S and an element t, with $tt^{-1} = e_1$, $t^{-1}t = e_2$ and $t^{-1}at = (a)\phi$, for all $a \in A_1$.

Special cases of $S^* = [S; A_1, A_2; \phi]$ have been investigated:

• Yamamura (1997-2006).

- Yamamura (1997-2006).
- Jajcayová (1997).

- Yamamura (1997-2006).
- Jajcayová (1997).
- Cherubini and Rodaro (2008–2011).

- Yamamura (1997-2006).
- Jajcayová (1997).
- Cherubini and Rodaro (2008–2011).
- Ayyash (2014).

Special cases of $S^* = [S; A_1, A_2; \phi]$ have been investigated:

- Yamamura (1997-2006).
- Jajcayová (1997).
- Cherubini and Rodaro (2008–2011).
- Ayyash (2014).

A structure theory for the general case still does not exist. The current research attempts to solve this and is joint work with Tatiana Jajcayová.

Results

If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following.

Results

If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following.

• A description of the Schützenberger automata of S*.

Results

If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following.

- A description of the Schützenberger automata of S*.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* .

Results

If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following.

- A description of the Schützenberger automata of S*.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* .
- Conditions for S* to have decidable word problem.

Results

If $S^* = [S; A_1, A_2; \phi]$ is an HNN extension, where A_1 and A_2 are lower bounded in S, then we have the following.

- A description of the Schützenberger automata of S*.
- Results on the endomorphism monoids and automorphism groups of the Schützenberger graphs of S^* .
- Conditions for S* to have decidable word problem.

The results generalise Jaycayová's PhD on lower bounded HNN extensions (1997).

The Schützenberger Graphs Of $S^* = [S; A_1, A_2; \phi]$

The Schützenberger Graphs Of $S^* = [S; A_1, A_2; \phi]$

Assuming no conditions on A_1 and A_2 :

• Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.

- Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2.

- Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2.
- Let μ_{A_i} be the least congruence on $S*_{E(A_i)}M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S*_{E(A_i)}M(A_i))$, for i=1,2.

- Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2.
- Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2.
- Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2.

- Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2.
- Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2.
- Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2.
- Define $Z_i = (A_i *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2, similarly.

- Let $M(A_i)$ be the semilattice of all closed inverse submonoids of A_i , for i=1,2. The product of closed inverse submonoids is defined as the closed inverse submonoid they generate.
- Let $\langle a \rangle$ denote the closed inverse submonoid of A_i generated by $a \in A_i$, for i = 1, 2.
- Let μ_{A_i} be the least congruence on $S *_{E(A_i)} M(A_i)$ such that $g\mu_{A_i} \leq a\mu_{A_i}$ if and only if $g\mu_{A_i} \leq \langle a \rangle \mu_{A_i}$, for all $a \in A_i$ and $g \in E(S *_{E(A_i)} M(A_i))$, for i = 1, 2.
- Put $T_i = (S *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2.
- Define $Z_i = (A_i *_{E(A_i)} M(A_i))/\mu_{A_i}$, for i = 1, 2, similarly.
- We have an isomorphism $\pi: Z_1 \to Z_2$ and S is embedded into T_1 and T_2 . Put $T = T_1 *_S T_2$.

Results

If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then:

Results

If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then:

• Z_1 and Z_2 are embedded into T.

Results

If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then:

- Z_1 and Z_2 are embedded into T.
- Z_1 and Z_2 are lower bounded in T.

Results

If $S^* = [S; A_1, A_2; \phi]$ is any HNN extension then:

- Z_1 and Z_2 are embedded into T.
- Z_1 and Z_2 are lower bounded in T.
- S^* is embedded into $T^* = [T; Z_1, Z_2; \pi]$.

Corollaries

We can reprove the literature, in particular when S is finite:

Corollaries

We can reprove the literature, in particular when S is finite:

• (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem.

Corollaries

We can reprove the literature, in particular when S is finite:

- (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem.
- (Ayyash 2014) Necessary and sufficient conditions are given for S^* to be completely semisimple.

Corollaries

We can reprove the literature, in particular when S is finite:

- (Cherubini and Rodaro 2008) If S is finitely presented then S^* has decidable word problem.
- (Ayyash 2014) Necessary and sufficient conditions are given for S* to be completely semisimple.
- (Ayyash 2014) A maximal subgroup of S^* is either the fundamental group of a graph of groups, defined by the \mathcal{D} -classes of S, A_1 and A_2 , or is a homomorphic image of a subgroup of S.

Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i .

Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i .

• Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$.

Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i .

- Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$.
- Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$.

Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i .

- Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$.
- Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$.

We can give an analogue of a well-known group theory result by Higman, Neumann and Neumann (1949).

Let $S^* = [S; A_1, A_2; \phi]$ be any HNN extension of an inverse semigroup S. Let $FIM(x_i)$ be the free inverse monoid on x_i .

- Put $S_1 = S *_{\{e_1\}} FIM(x_1)$, where $\{e_1\} \cong \{x_1x_1^{-1}\}$. Let U_1 be the inverse subsemigroup of S_1 generated by $S \cup x_1^{-1}A_1x_1$.
- Put $S_2 = S *_{\{e_2\}} FIM(x_2)$, where $\{e_2\} \cong \{x_2^{-1}x_2\}$. Let U_2 be the inverse subsemigroup of S_2 generated by $S \cup x_2 A_2 x_2^{-1}$.

We can give an analogue of a well-known group theory result by Higman, Neumann and Neumann (1949).

HNN Theorem

The HNN extension S^* is embedded onto the inverse subsemigroup of $S_1 *_{U_1 \cong U_2} S_2$ generated by S and $t = x_1 x_2$.

Sketch Of Proof, Part 1 / 4

A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$:

• Black circles represent Schützenberger graphs of S.

A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$:

- Black circles represent Schützenberger graphs of S.
- Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$.

A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$:

- ullet Black circles represent Schützenberger graphs of S.
- Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$.
- Arrows are paths labeled by S or $x_1^{-1}A_1x_1$, dots are vertices.

A typical Schützenberger graph of $S * x_1^{-1}A_1x_1$:

- Black circles represent Schützenberger graphs of S.
- Green circles represent Schützenberger graphs of $x_1^{-1}A_1x_1$.
- Arrows are paths labeled by S or $x_1^{-1}A_1x_1$, dots are vertices.
- $s_1, s_2, s_3 \in S$, $g_1, g_2 \in E(S)$, $a_1 \in A_1$, $f_1, f_2, f_3 \in E(A_1)$.

• Replace the green circles by the corresponding Schützenberger graphs of $S * FIM(x_1)$.

• Close the graph relative to the relations $e_1 = x_1 x_1^{-1}$.

- Close the graph relative to the relations $e_1 = x_1 x_1^{-1}$.
- We obtain a Schützenberger graph of $S_1 = S *_{\{e_1\}} FIM(x_1)$.

• The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$.

- The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$.
- Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$.

- The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$.
- Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$.
- We have an amalgam $[S_1, S_2; U_1 \cong U_2]$.

- The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$.
- Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$.
- We have an amalgam $[S_1, S_2; U_1 \cong U_2]$.
- The natural map $\theta: S^* \to S_1 *_{U_1 \cong U_2} S_2$,, extending $S \to S: s \to s$ and $t \to t = x_1 x_2$ can be shown to be an embedding, by universal considerations.

- The graph algorithm shows that $U_1 \cong S * x_1^{-1} A_1 x_1$.
- Similarly, $U_2 \cong S * x_2 A_2 x_2^{-1}$.
- We have an amalgam $[S_1, S_2; U_1 \cong U_2]$.
- The natural map $\theta: S^* \to S_1 *_{U_1 \cong U_2} S_2$,, extending $S \to S: s \to s$ and $t \to t = x_1 x_2$ can be shown to be an embedding, by universal considerations.
- This completes the proof.

• If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension.

- If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension.
- If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original.

- If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension.
- If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original.
- We can study any amalgam / HNN of inverse semigroups.

- If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension.
- If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original.
- We can study any amalgam / HNN of inverse semigroups.
- Results from the literature can be confirmed.

- If we have lower bounded subsemigroups then we can describe the Schützenberger graphs of an amalgam / HNN extension.
- If not, we can construct a new amalgam / HNN extension, with lower bounded subsemigroups, that contains the original.
- We can study any amalgam / HNN of inverse semigroups.
- Results from the literature can be confirmed.
- We can prove analogues of group theory results, such as the HNN embedding theorem.