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e An amalgam [S1, Sy; U] consists of inverse semigroups S
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Amalgams

e An amalgam [S1, Sy; U] consists of inverse semigroups S
and Sy that intersect in an inverse subsemigroup U.

e Hall (1975) showed that S; and Sy are embedded into the

amalgamated free product S *y S2, with their images
intersecting in U.
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A structure theory for the general case still does not exist. The
current research attempts to solve this.
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Lower Bounded Subsemigroups

e We say that U is lower bounded in S if u > e, where u € U
and e € E(S}), implies u > f > e, for some f € E(U).

4/24



Lower Bounded Subsemigroups

e We say that U is lower bounded in Sy if u > e, where u € U
and e € E(S}), implies u > f > e, for some f € E(U).

4/24



Lower Bounded Subsemigroups

e We say that U is lower bounded in S if u > e, where u € U
and e € E(S}), implies u > f > e, for some f € E(U).

e Similarly, we say that U is lower bounded in Ss if u > e, where
u € U and e € E(S3), impliesu > f > e, for some f € E(U).
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First Main Results

Results
If [S1, S2; U] is an amalgam, where U is lower bounded in Sy
and Sy, then we have the following.

e A description of the Schiitzenberger automata of Sy i Ss.

e Results on the endomorphism monoids and automorphism
groups of the Schiitzenberger graphs of S1 xy Ss.

e Conditions for S1 xy Sy to have decidable word problem.

The results generalise Bennett's papers on lower bounded
amalgams (1997).
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The General Case For Amalgams

Assuming no conditions on U:

Let M(U) be the semilattice of all closed inverse submonoids
of U. The product of closed inverse submonoids is defined as
the closed inverse submonoid they generate.

Let (u) be the closed inverse submonoid of U generated
by u € U.

Let uy be the least congruence on S; x gy M (U) such that
guy < upg if and only if guy < (u)uy, for all w € U and

g € E(Si*g@y M(U)), fori=1,2.

Put T; = (S; xgwy M(U))/pu, for i =1,2.

Define Z = (U *gy M(U))/pw, similarly.

All definitions of u agree on U gy M(U).
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o (Cherubini, Meakin and Piochi 2005) If Sy and Sy are finitely
presented then S1 %y So has decidable word problem.

e (Rodaro 2010) We have necessary and sufficient conditions for
S1 xy So to be completely semisimple and sufficient
conditions for finite R-classes.

e (Cherubini, Jajcayovd and Rodaro 2015) A maximal subgroup
of S1 xy So is the fundamental group of a graph of groups,
defined by the D-classes of S1, So and U, or is a
homomorphic image of a subgroup of S1 or Ss.
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HNN Extensions

e Let .S be an inverse semigroup and let ¢ : A; — As be an
isomorphism between inverse subsemigroups of S.

e If A1 and As are not monoids then we adjoin a shared identity
1to Ay, As and S. Let e; be the identity of A;, for i =1,2.

e Yamamura (1997) showed that the HNN extension
S* =[S; Ay, Ag; ¢] contains a copy of S and an element ¢,
with tt7! = ey, t 7't = e5 and t~lat = (a)@, for all a € A;.
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Literature

Special cases of S* = [S; Aj, Aa; ¢] have been investigated:
e Yamamura (1997-2006).
e Jajcayova (1997).
e Cherubini and Rodaro (2008-2011).
o Ayyash (2014).

A structure theory for the general case still does not exist. The
current research attempts to solve this and is joint work with
Tatiana Jajcayova.
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lower bounded in S, then we have the following.

e A description of the Schiitzenberger automata of S*.

e Results on the endomorphism monoids and automorphism
groups of the Schiitzenberger graphs of S*.

e Conditions for S* to have decidable word problem.

The results generalise Jaycayova’'s PhD on lower bounded HNN
extensions (1997).
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Let M (A;) be the semilattice of all closed inverse submonoids
of A;, for i = 1,2. The product of closed inverse submonoids
is defined as the closed inverse submonoid they generate.

Let (a) denote the closed inverse submonoid of A; generated
by a € A;, fori=1,2.

Let pa, be the least congruence on S *p(4,) M (A;) such that
gua, < apa, if and only if gua, < (a)pa,, for all a € A; and
g € E(S *E(A;) M(AZ)), fori=1,2.

Put T; = (S xg(a,) M(Ai))/pa,, fori=1,2.

Define Z; = (A; xp(a,) M(A:))/1a,, for i = 1,2, similarly.
We have an isomorphism 7 : Z1 — Z5 and S is embedded
into 17 and Ts. Put T = T3 xg T5.
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Fourth Main Results
Results
If S* = [S; A1, Aa; @] is any HNN extension then:
e 71 and Zy are embedded into T.
e 71 and Zy are lower bounded in T
e S* is embedded into T* = [T'; Z1, Za; 7.
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Corollaries
We can reprove the literature, in particular when S is finite:

e (Cherubini and Rodaro 2008) If S is finitely presented then S*
has decidable word problem.

e (Ayyash 2014) Necessary and sufficient conditions are given
for S* to be completely semisimple.

e (Ayyash 2014) A maximal subgroup of S* is either the
fundamental group of a graph of groups, defined by the
D-classes of S, A1 and As, or is a homomorphic image of a
subgroup of S.
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HNN Theorem (1949) Analogue

Let S* = [S; A1, Ag; ¢ be any HNN extension of an inverse
semigroup S. Let F'IM (x;) be the free inverse monoid on ;.
e Put S1 = S xpy FIM(z1), where {e1} = {z1271}. Let U
be the inverse subsemigroup of S generated by S U mflAlxl
o Put Sy = S x(c,y FIM(22), where {e2} = {z5 x2}. Let Uy
be the inverse subsemigroup of So generated by S U ngng_I.

We can give an analogue of a well-known group theory result by
Higman, Neumann and Neumann (1949).

HNN Theorem

The HNN extension S* is embedded onto the inverse
subsemigroup of Sy *y,~y, S2 generated by S and t = x1z».
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Sketch Of Proof, Part 1 / 4
A typical Schiitzenberger graph of S % :EflAlml:
e Black circles represent Schiitzenberger graphs of S.
e Green circles represent Schiitzenberger graphs of xl_lAlacl.

e Arrows are paths labeled by S or xl_lAlxl dots are vertices.

® 51,52,53 €S, g1,92 € E(S), a1 € A1, f1, fo, [3 € E(A1).
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Sketch Of Proof, Part 2 / 4

e Replace the green circles by the corresponding Schiitzenberger
graphs of S« FIM (xy).
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Sketch Of Proof, Part 3 / 4
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Sketch Of Proof, Part 3 / 4

e Close the graph relative to the relations e; = xlel.
e We obtain a Schiitzenberger graph of Sy = S (.} FIM (z1).
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The graph algorithm shows that U; & S x a:flAlajl.
Similarly, Uy &£ S * mgAgxgl.
We have an amalgam [S1, So; Uy = Us].

The natural map 0 : S* — St *y,~y, S2,, extending
S —S:s—sandt — ¢t = x129 can be shown to be an
embedding, by universal considerations.

This completes the proof.
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Conclusions

If we have lower bounded subsemigroups then we can describe
the Schiitzenberger graphs of an amalgam / HNN extension.

If not, we can construct a new amalgam / HNN extension,
with lower bounded subsemigroups, that contains the original.

We can study any amalgam / HNN of inverse semigroups.
Results from the literature can be confirmed.

We can prove analogues of group theory results, such as the
HNN embedding theorem.
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