Symmetry groups for social preference functions

Daniela Bubboloni

13 June 2019

Sandgal-Cremona

A joint research with Francesco Nardi

A student of mine at DIMAI-Università degli Studi di Firenze

A Social Choice question

Social preference functions

A committee of $h \ge 2$ individuals needs to order $n \ge 2$ alternatives.

Every individual expresses his/her preferences by a linear order (a ranking) of the alternatives.

Those preferences are aggregated into a unique social preference (the final ranking) using a rule.

Such a rule is called a social preference function (SPF).

- Desirable properties for a SPF
 - Anonymity: the names of individuals are irrelevant
 - Neutrality: the names of alternatives are irrelevant

Problem

- The main rules used to get a decision (Simple majority, Borda count, Minimax, Kemeny rule...) are anonymous and neutral...
- But they are correspondences and not functions!

The severe arithmetical obstructions

Theorem (Bubboloni-Gori, 2014)

Given *n* alternatives and *h* individuals,

• there exists an anonymous and neutral SPF if and only if

gcd(h, n!) = 1 (*)

 When (*) does not hold, a SPF is only partially anonymous and neutral Posed by the mathematical economist J. S. Kelly in Conjectures and unsolved problems (1991) and remained unsolved

Problems

Given a desired level of anonymity or neutrality, when is it possible to get a SPF having such a level of anonymity or neutrality?

- $N := \{1, \ldots, n\}$, the set of alternatives , $n \ge 2$
- $H := \{1, \ldots, h\}$, the set of individuals, $h \ge 2$
- $\mathcal{L}(N)$, the set of linear orders on *N* (complete, transitive, antisymmetric relations)

• For
$$i \in H$$
, his/her preferences are given by $p_i = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathcal{L}(N)$

 $\mathcal{L}(N)$ is identifiable with the symmetric group $S_n = Sym(N)$

$$\psi \in S_n$$
 is identified with $\begin{bmatrix} \psi(1) \\ \psi(2) \\ \vdots \\ \psi(n) \end{bmatrix} \in \mathcal{L}(N)$

- The ordered list $p = (p_i)_{i=1}^h$ is called a preference profile.
- The set of profiles is denoted by \mathcal{P} and is identified with S_n^h

Consider the group $G := S_h \times S_n$.

Given $p \in \mathcal{P}$ and $(\varphi, \psi) \in G$, $p^{(\varphi, \psi)}$ is the profile defined by

$$\boldsymbol{p}_i^{(\varphi,\psi)} := \psi \boldsymbol{p}_{\varphi^{-1}(i)}, \quad \forall i \in H.$$

- 1. Individual *i* is renamed $\varphi(i)$
- 2. Alternative x is renamed $\psi(x)$
- 3. The map $p \mapsto p^{(\varphi,\psi)}$ defines an action of *G* on \mathcal{P}

Example

• h=5, n=3,
$$\varphi = (134)(25) \in S_5$$
, $\psi = (12) \in S_3$ and

$$p = \begin{bmatrix} 1 & 2 & 3 & 1 & 3 \\ 3 & 3 & 1 & 3 & 1 \\ 2 & 1 & 2 & 2 & 2 \end{bmatrix}$$

₩

$$p^{(\varphi,id)} = \begin{bmatrix} 1 & 3 & 1 & 3 & 2 \\ 3 & 1 & 3 & 1 & 3 \\ 2 & 2 & 2 & 2 & 1 \end{bmatrix}, \qquad p^{(id,\psi)} = \begin{bmatrix} 2 & 1 & 3 & 2 & 3 \\ 3 & 3 & 2 & 3 & 2 \\ 1 & 2 & 1 & 1 & 1 \end{bmatrix}$$
$$p^{(\varphi,\psi)} = \begin{bmatrix} 2 & 3 & 2 & 3 & 1 \\ 3 & 2 & 3 & 2 & 3 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}$$

SPFs and symmetry

• A SPF is a map $F : \mathcal{P} \to S_n$.

 $\mathcal{F}:=\text{the set of the SPFs}$

• Let $U \leq G$. We say that a SPF *F* is *U*-symmetric if

 $F(p^{(\varphi,\psi)}) = \psi F(p), \quad \forall p \in \mathcal{P}, \ \forall (\varphi,\psi) \in U.$

 \mathcal{F}^{U} := the set of *U*-symmetric SPFs

- *F* is anonymous $\iff S_h \times \{id\}$ -symmetric
- *F* is neutral $\iff \{id\} \times S_n$ -symmetric
- *F* is anomymous and neutral $\iff S_h \times S_n$ -symmetric

Problema

Given $U \leq G$, under which condition $\mathcal{F}^U \neq \emptyset$?

Define $U \leq G$ regular if, for every $p \in \mathcal{P}$,

 $\operatorname{Stab}_U(p) \leq S_h \times \{id\}$

Theorem 1 (Bubboloni-Gori, 2015)

Let $U \leq G$. Then $\mathcal{F}^U \neq \emptyset \iff U$ is regular

Characterization of regular groups

 $T(\varphi) :=$ list of sizes of the orbits of $\varphi \in S_h$ on $H = \{1, \dots, h\}$

Theorem 2 (Bubboloni-Gori, 2015)

Let $U \leq G = S_h \times S_n$. The following conditions are equivalent:

a) U is regular

b) If $(\varphi,\psi)\in U$, then $orall\pi$ prime number,

$$|\psi|_{\pi} = \pi^a > 1 \Longrightarrow \pi^a \nmid \operatorname{gcd}(T(\varphi))$$

•
$$V \times \{id\}$$
, for $V \leq S_h$, is regular

- $\{id\} \times W$, for $W \leq S_n$, is regular
- $S_h \times W$, for $W \leq S_n$, is regular $\iff \text{gcd}(h, |W|) = 1$

₩

For a SPF: easy to get only anonymity or only neutrality, difficult to get both!

Anonymity, neutrality and symmetry groups for a SPF

Let $F \in \mathcal{F}$. Define

1. The Anonymity group of F

$$G_1(F) := \{(\varphi, \mathit{id}) \in G : F(p^{(\varphi, \mathit{id})}) = F(p), \ \forall p \in \mathcal{P}\}$$

(Kelly)

2. The Neutrality group of F

$$G_2(F) := \{ (\textit{id}, \psi) \in G : F(p^{(\textit{id}, \psi)}) = \psi F(p), \ \forall p \in \mathcal{P} \}$$

(Kelly)

3. The Symmetry group of F

$$G(F) := \{ (\varphi, \psi) \in G : F(p^{(\varphi, \psi)}) = \psi F(p), \forall p \in \mathcal{P} \}$$

(New)

- There are links among those concepts but not the trivially expected ones!
- Surely

$$G(F) \geq G_1(F) \times G_2(F)$$

but, generally,

 $G(F) \neq G_1(F) \times G_2(F)$

\downarrow Symmetry \neq Anonymity \times Neutrality

Anonymity, neutrality and symmetry groups

Definitions

Let $U \leq G = S_h \times S_n$. *U* is called

- 1. an Anonymity group if there exists $F \in \mathcal{F}$ such that $G_1(F) = U$
- 2. a Neutrality group if there exists $F \in \mathcal{F}$ such that $G_2(F) = U$
- 3. a Symmetry group if there exists $F \in \mathcal{F}$ such that G(F) = U

Three problems

- 1. Which $U \leq G = S_h \times \{id\}$ are anonymity groups? (Kelly)
- 2. Which $U \leq \{id\} \times S_n$ are neutrality groups? (Kelly)
- **3**. Which $U \leq S_h \times S_n$ are symmetry groups? (New)

• Example: G is a symmetry group \Leftrightarrow gcd(h, n!) = 1

The heart of the matter

An easy consequence of Theorem 1

Proposition

Let $U \leq G$.

- If U is a symmetry group, then U is regular
- If U is a maximal regular subgroup, then U is a symmetry group

Why *U* regular $\Rightarrow U$ a symmetry group?

U regular $\Rightarrow \mathcal{F}^U \neq \emptyset$, by Theorem 1.

For every $F \in \mathcal{F}^U$, you have $G(F) \geq U$.

You do not know if, for some *F*, you have G(F) = U.

Similar obstructions appear for anonymity and neutrality

Theorem

For every *h* and *n*, every $U \leq \{id\} \times S_n$ is a neutrality group

Corollary

Let $W \leq S_n$. If $S_h \times W$ is regular, then it is a symmetry group

An interesting fact

- U neutrality group \implies U symmetry group
- Example: $\{id\} \times S_2$ is a neutrality group but not a symmetry group when h = 3 or h = 4.

Open: What does it happen for $h \ge 5$?

Anonymity and symmetry groups

Proposition

Let $U \leq S_h \times \{id\}$. The following facts are equivalent:

- i) U is an anonymity group
- ii) U is an symmetry group
- ii) \Rightarrow i) is trivial
- i)⇒ ii) is deep

₩

Anonimity groups = Symmetry groups included in $S_h \times \{id\}$

₩

Sufficient conditions for anonymity work also for symmetry

Necessary conditions for symmetry work also for anonymity

A sufficient condition for anonymity

Theorem

Let $U \leq S_h \times \{id\}$. If there exists $p \in \mathcal{P}$, such that

```
\operatorname{Stab}_{\mathcal{S}_h \times \{id\}}(p) \leq U \quad (*),
```

then U is an anonymity group

Corollary

i) If H_1, \ldots, H_k is a partition of H with $1 \le k \le n!$, then

 $[\times_{i=1}^{k} \operatorname{Sym}(H_{i})] \times \{id\}$

is an anonymity group

ii) If $h \le n!$, then every $U \le S_h \times \{id\}$ is an anonymity group

Proof: i) satisfy (*) choosing a profile *p* with $p_i = p_j$ if and only if $i, j \in H_s$ for some $1 \le s \le k$; ii) use the partition of *H* by singletons.

Boolean functions

Case n = 2

Here $\mathcal{P} = \{ id, (12) \}^h$.

Write 0 := id, 1 := (12) to get $\mathcal{P} = \{0, 1\}^h$.

The action of $V \times \{id\} \leq S_h \times S_2$, on \mathcal{P} only changes the order of 0, 1 in $p \in \mathcal{P}$.

A SPF is just a boolean function

$$F: \{0,1\}^h \to \{0,1\}$$

• Recall that *V* is called 2-representable if there exists a boolean function *F* such that

$$\left\{\varphi\in S_h:F(x_{\varphi^{-1}(1)},\ldots,x_{\varphi^{-1}(h)})=F(x),\ \forall x\in\{0,1\}^h\right\}=V$$

• So V is 2-representable \iff V \times {*id*} is an anonymity group

A necessary condition for symmetry

A concept from permutation group theory

Definition

Let $U, V \leq G$. We write

- $U \leq_{\mathcal{P}} V$ if $p^U \subseteq p^V$, $\forall p \in \mathcal{P}$
- $U \cong_{\mathcal{P}} V$ if $p^U = p^V$, $\forall p \in \mathcal{P}$

If $U \cong_{\mathcal{P}} V$ we say that U and V are orbit equivalent

A crucial fact

Theorem

Let $U, V \leq G$ such that $\langle U, V \rangle$ is regular. Then

•
$$U \leq_{\mathcal{P}} V \iff \mathcal{F}^V \subseteq \mathcal{F}^U$$

•
$$U \cong_{\mathcal{P}} V \iff \mathcal{F}^V = \mathcal{F}^U$$

The group O(V)

Definition

Let $V \leq G$ be regular. Define

$$O(V) := \langle U \leq G : U \leq_{\mathcal{P}} V, \langle U, V \rangle$$
 is regular

Theorem

Let $V \leq G$ be regular. Then

•
$$V \leq O(V) = \bigcap_{F \in \mathcal{F}^V} G(F)$$

• O(V) is the greatest regular subgroup of G orbit equivalent to V

Corollary- A necessary condition for symmetry

Let $V \leq G$ be regular. If V is a symmetry group then O(V) = V

Corollary- A necessary condition for 2-representability

Let $V \leq S_h$. If V is 2-representable then $O(V \times \{id\}) = V \times \{id\}$

Examples

•
$$O(A_h \times \{id\}) = \begin{cases} S_h \times \{id\} & \text{if } h > n! \\ A_h \times \{id\} & \text{if } h \le n! \end{cases}$$

• For
$$h \ge 4$$
, $O(\langle (1234) \rangle \times \{ \textit{id} \}) = \langle (1234), (13) \rangle \times \{ \textit{id} \} \simeq D_8$

Consequence

 $A_h \times \{id\}$ is an anonymity group $\iff h \le n!$

A question

$$O(V) = V \implies V$$
 is a symmetry group? No

Proposition

Let $V \leq G$, where one of the following cases hold

i) $G = S_4 \times S_2$ and $V = K \times \{id\}$, with $K \le S_4$ the Klein 4-group

ii)
$$G = S_3 \times S_2$$
 or $G = S_4 \times S_2$ and $V = \{id\} \times S_2$

Then:

1. O(V) = V

2. V is not a symmetry group

- *K* × {*id*} is a key example for the boolean function 2-representability
- *K* × {*id*} is the unique not symmetric group among the *V* ≤ *S_h* × {*id*} having *O*(*V*) = *V*, within many classes of permutation groups (M. Grech and A. Kisielewicz (1998-2014))

• All the examples we know are about *n* = 2...

```
Conjecture for sandgal-19Let n \ge 3 and V \le G be regular. ThenV is a symmetry group\longleftrightarrowO(V) = V
```

References

D. Bubboloni, M. Gori, Anonymous and neutral majority rules, *Social Choice and Welfare* **43** (2014), 377-401

D. Bubboloni, M. Gori, Symmetric majority rules, *Mathematical Social Sciences* **76** (2015), 73-86

M. Grech, Regular symmetric groups of boolean functions, *Discrete Mathematics* **310**, (2010), 2877–2882

M. Grech, A. Kisielewicz, Symmetry groups of boolean functions, *European Journal of Combinatorics* **40**, (2014), 1-10

J. S. Kelly, Symmetry groups, *Social Choice and Welfare* **8** (1991), 89–95

A. Kisielewicz, Symmetry Groups of Boolean Functions and Constructions of Permutation Groups, *Journal of Algebra* **199** (1998), 379–403