Möbius function in finite groups: some computation and application

SandGAL2019 Cremona June 10-13

Francesca Dalla Volta Milano-Bicocca (Joint work (in progress) with Martino Borello, Giovanni Zini)

The Möbius function on a PoSet

The Möbius function associated with a finite, partially-ordered set χ (poset) μ_{χ} is a map $\mu_{\chi} : \chi \times \chi \to \mathbb{Z}$ such that : $\mu_{\chi}(a, b) = 0$ unless $a \leq b$ when it is defined recursively by the equations

$$\mu_{\chi}(a,a) = 1$$

$$\sum_{a \le c \le b} \mu_{\chi}(a, c) = 0, \ a < b.$$

GENERALIZATION of the classical Möbius function of the number theory:

 $\mu(n) = (-1)^r$ if n is the product of r distinct primes $\mu(n) = 0$ if n is divisible by the square of a prime.

The Möbius function of a group G

Let G be a (finite) group; Denote by $\mathcal{P}(G)$ the subgroup lattice of G. The Möbius function of G is defined recursively by

$$\mu_G(G) = 1, \ \mu(H) = -\sum_{K: H < K \le G} \mu_G(K)$$

for any H < G.

EXAMPLE 1. If G is the cyclic infinite group, μ_G is the number theoretic Möbius function: if G_n is the subgroup of G of index n, $\mu_G(G_n) = \mu(n)$

Beginning with generation of groups.

 μ was introduced independently by Weisner (1935) and Hall(1936). Hall: enumerates generating tuples of elements of G:

- $\sigma_n(G)$: number of ordered *n*-tuples of elements of *G*
- $\phi_n(H)$: number of ordered *n*-tuples of elements of *G* which generate $H \leq G$.

$$\sigma_n(G) = \sum_{H:H \le G} \phi_n(H)$$

$$\phi_n(G) = \sum_{H, H \le G} \sigma_n(H)\mu(H) = \sum_{H, H \le G} |H|^n \mu(H)$$

(using Möbius inversion formula)

Great interest about Möbius function and related topics

T. Hawkes, M. Isaacs, M. Özaydin (1989), Pahlings(1993): relation between the Möbius function on the Poset P(G) of the subgroups of a group G and the Möbius function λ of the lattice of conjugacy classes of subgroups of G:
[H] ≤ [K] if H ≤ K^g for some g ∈ G
For solvable groups, the following is true:

 $\mu_G(H) = \lambda_G([H])[N_{G'}(H) : G' \cap H]$

Is it the following true for non solvabe groups?NO

• Find some bound (or the exact value) for $\mu_G(1)$, when G is a classical group. (Shareshan Ph.D thesis, 1996): partial results, related to the reduced Euler characteristic for a simplicial complex;

Denote by Prob_G(n) the probability that n elements of G,
 (G finite) generate G. It is immediate:

$$Prob_G(n) = \frac{\phi_n(G)}{\mid G \mid^n} = \sum_{H \le G} \frac{\mu_G(H)}{[G:H]^n}$$

It is possible to define a **complex function** (Boston, Mann 1996):

$$P_G(s) = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^s}, \ s \in \mathbb{C},$$

where

$$a_n(G) = \sum_{[G:H]=n} \mu_G(H)$$

 $P_G(t) = Prob_G(t)$ for $t \in \mathbb{N}$

Going to profinite groups:

Definition 2. A finitely generated profinite group is said to be positively generated if, for some k, the probability that k random elements generate G, is positive.

In case of profinite groups, the sum becomes:

$$P_G(s) = \sum_{H \le oG} \frac{\mu_G(H)}{\mid G : H \mid^s}$$

where H ranges over all open subgroups of G.

Mann conjectured that this sum is absolutely convergent in "some" half complex plane. This conjecture is implied by the following 2 facts:

- 1 the number $|\mu_G(H)|$ is bounded by a polynomial function in [G:H];
- 2 the number $b_n(G)$ of subgroups H of index n satisfying $\mu_G(H) \neq 0$ grows at most polynomially in n.

1 and 2 were proved in the case of alternating and symmetric groups (Lucchini-Colombo- 2010); Lucchini (2010): Actually 1 and 2 are true, if they are verified for almost finite simple groups.

• The structure of the group of units of the finite monoid of all cellular automata over the configuration space A^G , for a given finite set A and a finite group G (A. Castillo-Ramirez and M. Gadouleau, 2017)

The Möbius function for $G = PSL(3, 2^p)$

Alternating and symmetric groups done. Now? Other classical groups?

Not very much is known on the exact values of $\mu(H)$ when G is a simple group; up to our knowledge, the only infinite families of non-abelian simple groups for which the Möbius function is completely known are the following.

- The groups PSL(2,q); for q prime for any prime power q (where also the groups PGL(2,q) are completely worked out. (Downs 1991, Hall 1936)
- The Suzuki groups Sz(q) for any odd power q of 2 (Down, Jones, 2016);
- The Ree groups Ree(q) for any odd power q of 3 (Pierro, 2016);
- The 3-dimensional unitary groups $PSU(3, 2^{2^n})$, n > 0 (Zini 2018);

For any of these families Mann's conjecture is verified.

Theorem 3. (Borello, D.V., Zini) The Möbius function is completely known in case $G = PSL(3, 2^p)$, p prime number.

		,	
Н	elements of the plane stabilized by H		
G	_		
$(E_{q^2} times C_{q-1})$. $PSL(2,q)$	an \mathbb{F}_q -rational point		
$(E_{q^2} times C_{q-1})$. $PSL(2,q)$	an \mathbb{F}_q -rational line		
$(C_{q-1} \times C_{q-1}) \rtimes Sym(3)$	an \mathbb{F}_q -rational triangle		
$C_{q^2+q+1} \rtimes C_3$	an $\mathbb{F}_{q^3} \setminus \mathbb{F}_q$ -rational triangle		
<i>PSL</i> (3,2)	a subplane of order 2		
$(E_q . E_{q^2}) \rtimes (C_{q-1} \times C_{q-1})$	an \mathbb{F}_q -rat. point P and an \mathbb{F}_q -rat. ℓ , $P \in \ell$		
GL(2,q)	an \mathbb{F}_q -rat. P and an \mathbb{F}_q -rat. ℓ , $P \notin \ell$		
$E_q times (C_{q-1} imes C_{q-1})$	two \mathbb{F}_q -rat. points and two \mathbb{F}_q		
$(C_{q-1} imes C_{q-1}) times C_2$	an \mathbb{F}_q -rati. triangle and one of its vert.		
$(C_2 \times C_2) \rtimes Sym(3)$	a subp. Π of order 2 and a point of Π		
$(C_2 \times C_2) \rtimes Sym(3)$	a subp. Π of order 2 and a line of Π		
$C_7 \rtimes C_3$	a subplane Π of order 2 and a triangle not in Π		
$C_4 \rtimes C_2$	a subplane Π of order 2, a P and an $\ell,\ P\in\ell$		

Strategy?

- Through geometric arguments, to find the subgroups which are intersection of maximal subgroups (MAXINT); then a lot of calculations.
- Considering the action of G on geometric objects, to find conjugacy classes.

Why only maxint?

Theorem 4. If *H* is not intersection of maximal subgroups, then $\mu(H) = 0$

Remark 5. It should be nice to have result for PSL(n,q) in general (at least in order to understand if the Lucchini-Mann conjecture is true). At the moment we were not able. The problem seems to be actually difficult. Going back to Shareshan work (2000), just some general bound for $\mu(1,G)$ is given for several classes of classical groups

Möbius function and other combinatorial object

- 1. Euler characteristic for the simplicial complex associated with a finite poset \mathcal{P} : the Möbius function can be used to compute the reduced Euler characteristic $\tilde{\chi}(\Delta(\mathcal{P}))$ of the order complex $\Delta(\mathcal{P})$ of \mathcal{P} . We give computation when \mathcal{P} is the poset L_r of *r*-subgroups of PGL(3,q)
- 2. finding the maximum number d such that the direct product of d copies of $PSL(3, 2^p)$ may be generated by 2 elements, but this is no more true for (d+1) copies
- 3. Connection with Cellular Automata

1. Euler characteristic

prime r	$ ilde{\chi}(\Delta(L_r))$	prime r	$ ilde{\chi}(\Delta(L_r))$
$r \nmid PGL(3,q) $	0	$r \mid (q-1), \ r \notin \{2,3\}$	$-\frac{q^2(q^2+q+1)(q^2+q-3)}{3}$
$r \mid q$	$-(q^3-1)$	$r = 2 \mid (q - 1)$	$\frac{q^2(q^2+q+1)(q^2+q-3)}{3}$
$3 \neq r \mid (q^2 + q + 1)$	$\frac{q^3(q-1)^2(q+1)}{3}$	$r = 3 \mid (q - 1)$	$\frac{q^2(q^6 - q^4 + 7q^3 - 7q - 8)}{8}$
$2 \neq r \mid (q+1)$	$rac{q^3(q^3-1)}{2}$		

2. Let $d_k(G)$ be the number of normal subgroups N of the free group F_k of finite rank k such that $F_k/N \cong G$. Then

$$d_k = \frac{1}{|aut(G)|} \sum_{H \le G} \mu(H) |H|^k,$$

(Downs Jones 2016, Hall 1935). For instance, for $G = PSL(3, 2^p)$

$$d_2(G) = \frac{q^4 + q^3 + q^2 + q + 2(q + 2)(q - 1)^3 - 3(q^2 + q + 1) - 107}{2p}$$

3. Some word about the last point:

- G is a finite group, A is a finite set, CA(G : A) is the monoid of all the Cellular Automata over A^G .
- ICA(G : A) the group of invertible (units) Cellular automata
- [H] is the conjugacy class of the subgroup H;
- $B_{[H]} = \{x \in A^G : [G_x] = [H]\}, B_{[H]}$ is an union of orbits for the action of G over A^G

Theorem 6. A. Castillo-Ramirez and M. Gadouleau, Let G be a finite group of order $n \ge 2$ and A a finite set of size $q \ge 2$. If H is a subgroup of order m,

$$|B_{[H]}| = |[H]| \sum_{K \le G} \mu(H, K)$$

Structure of ICA(G:A)

Theorem 7. If G is a finite group of order n and A a finite set of size $q \ge 2$, denote by $[H_1], \ldots, [H_r]$ the different conjugacy classes of subgroups of G. Then

$$ICA(G:A) \simeq \prod_{i=1,...r} \left(\left(\frac{N_G(H_i)}{H_i} \right) \wr Sym(\alpha_i) \right)$$

where $\alpha_i = \alpha_{[H_i]}(G:A) = | \mathcal{O}, \mathcal{O} \in B_{[H]} |$

Thank You

bibliography

- N. Boston, A probabilistic generalization of the Riemann zeta function, in ??Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam,?? Vol. 1, Progress in Mathematics, Vol. 138, Birkhauser, Boston, 1996
- 2. A. Castillo-Ramirez and M. Gadouleau, Cellular Automata and Finite Groups, *Nat. Comput.*, DOI 10.1007/s11047-017-9640-3.
- V.Colombo and A.Lucchini, On subgroups with non-zero Möbius numbers in the alternating and symmetric groups, *J.Algebra* 324 (9) (2010), 2464–2474.

- 4. P. Hall, The Eulerian functions of a group, *Quart. J. Math.*7 (1) (1936), 134–151.
- T. Hawkes, M. Isaacs, and M. Özaydin, On the Möbius function of a finte group, *Rocky Mountain J. Math.* 19 (4) (1989), 1003–1034.
- 6. A. Mann, Positively finitely generated groups, *Forum Math.*8 (4) (1996), 429–459.
- 7. A. Mann, A probabilistic zeta function for arithmetic groups, Internat. J. Algebra Comput. **15** (5–6) (2005), 1053–1059.

- 8. H. Pahlings, On the Möbius function of a finte group, Arch. Math. (Basel) 60 (1) (1993), 7–14.
- 9. Weisner L. Weisner, Abstract theory of inversion of finite series, *Trans. Amer. Math. Soc.* **38** (3) (1935), 474–484.