Additive semigroups of integers Embedding dimension of numerical semigroups

Violeta Angelkovska*, Donco Dimovski**
*FON University, Skopje; **Ss Ciril and Methodius University, Skopje

SANDGAL 2019

- This talk is motivated by the results, stated in the papers:
- [1] Д. Димовски, Адитивни полугрупи на цели броеви, Prilozi IX, **2**, MANU, Skopje, 1977, p. 21-25, (MR0554024 Additive semigroups of integers.(Macedonian) 10A99 (20M99));
- [2] Д. Димовски, М. Хаџи-Коста Јосифовска: Конечно генерирани потполугрупи од адитивната полугрупа \mathbb{N}^n , Math. Maced. Vol1, (2003), 77-88 (Finitely generated subsemigroups of the additive semigroup \mathbb{N}^n); and
- [3] М. Хаџи-Коста Јосифовска, Д. Димовски: Опис на конечно генерирани адитивни подгрупи на \mathbb{Z}^n , Збор. труд., III Конгрес на математичарите на Македонија, Струга 2005; (Сојуз на математичари на Македонија, Скопје 2007), 261-274 (**Description of additive subgroups of** \mathbb{Z}^n).

T.1.2. ([1]) Let G be a semigroup consisting of positive integers. Let n be the smallest integer in G, d the greatest common divisor of the elements of G and n = kd. Let us denote by A_i the set of those elements of G whose reminder after division by n is id, i.e.

$$A_i = \{a | a \in G, a = nt + id, t \in \mathbb{N}\}\$$

- (i) $G = A_0 \cup A_1 \cup \cdots \cup A_{k-1}$, the union is disjoint
- (ii) There exist $1=a_0,a_1,\dots,a_{k-1}\in\mathbb{N}$, such that $|A_i|=\{tn+id\mid t\geq a_i\}$ and

$$a_i + a_j \ge \begin{cases} a_{i+j}, i+j < k \\ a_{i+j-k} - 1, i+j \ge k \end{cases}$$

(iii) If $m_i=a_in+id$ then $\{n=m_0,m_1,\ldots,m_{k-1}\}$ generates G.

(iv) Let $b=max\{a_0,a_1,\ldots,a_{k-1}\}$, $s=max\{i|a_i=b\}$ and c=(b-1)k+s+1. Then $(c-1)d\not\in G$ and $\{td|t\geq c\}=G_o\subseteq G$. (We say that G_o is the regular part of G).

- **T. 2.1.** ([1])Let α be a congruence on G and $\alpha \neq \Delta_G$ (Δ_G is the diagonal). Then there exist $m, s_1, s_2, ..., s_{k-1} \in \mathbb{N}$ such that:
- (i) $a\alpha b \Longrightarrow m|a-b|$
- (ii) For every $t \in \mathbb{N}_0 \left[(s_i + t)n + id \right]^{\alpha}$ is an infinite class, and for every $v \in A_i$, $v < s_i n + id \Rightarrow v^{\alpha}$ is a finite class for $0 \le i \le k 1$.
- (iii) The integers s_i satisfy the following conditions: $s_i \ge a_i$ and

$$s_i + a_j \ge \begin{cases} s_{i+j}, i+j < k \\ s_{i+j-k} - 1, i+j \ge k \end{cases}$$

Examining the additive subsemigroups of \mathbb{Z}^n for n>1, first we come to the major difference with the case n=1. Any additive subsemigroup of \mathbb{Z} is finitely generated which is not the case for n>1.

Thm.([2]) An additive subsemigroup G of \mathbb{N}^n for n>1 is finitely generated if and only if G is a subset of Cone(A) for some subset A of G.

In order to obtain better undesrstanding of the additive subsemigroups of \mathbb{Z}^n we needed a good description of the additive subgroups of \mathbb{Z}^n , given in [3].

If in **T.1.2.** d=1, then $G\cup\{0\}$ is a numerical semigroup whose multiplicity is n, conductor is c, gaps are all the numbers tn+i for $t< a_i$, the genus is $\sum_{i=0}^{n-1}a_i$ and the Frobenius number is c-1. We denote this semigroup by $G=[n;a_0=1,a_1,\dots,a_{n-1}]$. The notion of embedding dimension is not considered in [1].

Next, let $G = [n; a_0 = 1, a_1, ..., a_{n-1}]$ be as above, let R(G) be the set of all $t \in \mathbb{Z}_n$, such that there are $i, j \in \mathbb{Z}_n$, $t = i \oplus j$ and $a_t = a_{i \oplus j} = a_i + a_j + [n; i, j]$ i.e.

$$R(G) = \{i \oplus j | i, j \in \mathbb{Z}_n, a_{i \oplus j} = a_i + a_j + [n; i, j]\}$$

where [n; i, j] is the integer part $\left[\frac{i+j}{n}\right]$, and let $S(G) = \mathbb{Z}_n \backslash R(G)$. We define two more sets:

$$B_0 = \{a_i n + i | i \in \mathbb{Z}_n\} \text{ and } M_0 = \{a_i n + i | i \in R(G)\} .$$

Theorem 1. The set $B_0 \setminus M_0$ is the minimal set of generators for G. So $ed(G) = |B_0 \setminus M_0| = |S(G)|$.

For $n, i_1, i_2, ..., i_k \in \mathbb{N}$ we denote the integer part $\left[\frac{i_1+i_2+\cdots i_k}{n}\right]$ by $[n; i_1, i_2, ..., i_k]$

Fact. Let $n, k, t \in \mathbb{N}$ and $\{i_i, i_2, ..., i_k\}, \{j_i, j_2, ..., j_t\} \subseteq \mathbb{Z}_n$. Then:

•
$$[n; i_1, i_2, \dots, i_k] = \frac{i_1 + i_2 + \dots + i_k - i_1 \oplus i_2 \oplus \dots \oplus i_k}{n}$$

•
$$[n; i_1, i_2, \dots, i_k, j_i, j_2, \dots, j_t] = [n; i_1 \oplus i_2 \oplus \dots \oplus i_k, j_i, j_2, \dots, j_t] + [n; i_1, i_2, \dots, i_k]$$

•
$$[n; i_1, i_2, ..., i_k, j_i, j_2, ..., j_t] = [n; i_1 \oplus ... \oplus i_k, j_1 \oplus ... \oplus j_t] + [n; i_1, ..., i_k] + [n; j_1, ..., j_t]$$

•
$$[n, i_1] = 0$$

Fact. Let
$$G = [n; a_0 = 1, a_1, ..., a_{n-1}]$$
. Then for each k , $a_{i_1 \oplus i_2 \oplus ... \oplus i_k} \le a_{i_1} + \cdots + a_{i_1} + [n; i_1, i_2, ..., i_k]$

Let n be a given positive integer. Let $T \subseteq \mathbb{Z}_n \setminus \{0\}$ be a generating set for \mathbb{Z}_n , and let $B(T) = \{b_s | s \in T\} \subseteq \mathbb{N}$ satisfies the following condition

if
$$t \in T$$
 and $t = i_1 \oplus \ldots \oplus i_r$ for $i_1, \ldots, i_r \in T \setminus \{t\}$
then $b_t < b_{i_1} + \ldots + b_{i_r} + [n; i_1, \ldots, i_r]$. (*)

We define a set $A = \{a_0, a_1, \dots, a_{n-1}\}$ as follows:

$$(i) a_0 = 1,$$

(ii) If
$$i \in T$$
 then $a_i = b_i$,

(iii) If
$$i \notin T$$
 then

$$a_i = min\{b_{i_1} + \ldots + b_{i_r} + [n; i_1, \ldots, i_r] | i = i_1 \oplus \ldots \oplus i_r, i_1, \ldots, i_r \in T\}.$$

Theorem. a) The numbers $a_0, a_1, \ldots, a_{n-1}$ satisfy the condition (ii) of **T.1.2.**, and, so, $G = [n; a_0 = 1, a_1, \ldots, a_{n-1}] = [n; A]$ is a numerical semigroup. (We denote this semigruoup by [n; T, B(T)])

- **b)** $R([n;T;B(T)G]) = \mathbb{Z}_n \setminus (T \cup \{0\})$
- c) ed([n; T; B(T)]) = |T| + 1

Theorem. A numerical semigroup G has ed(G) = d if and only if G = [n; T; B(T)] for some $n, T \subseteq \mathbb{Z}_n \setminus \{0\}$ and $B(T) \subseteq \mathbb{N}$ as above with |T| = d - 1.

Let
$$G = [n; T; B(T)], T = \{j_1, j_2, ..., j_k\}, \mathcal{A} = \{na_s + s | s \in \mathbb{Z}_n\}$$
 and
$$\mathcal{M} = \{nb_{j_r} + j_r | r = 1, 2, ..., k\} = \{m_1, m_2, ..., m_k\}.$$

We define $\varphi: \mathbb{Z}^k \longrightarrow \mathbb{Z}_n$ by:

$$\varphi(z_1, z_2, ..., z_k) = t$$
 iff $\sum_{s=1}^k z_s m_s$ is congruent to t modulo n .

Then, $\mathbf{H} = ker\varphi$ is an additive subgroup of of \mathbb{Z}^k of rank k. Let

$$H \cap (\mathbb{N}_0)^k = B^0$$
; $B = B^0 \setminus \{0,0,...,0\}$; $D = B + (\mathbb{N}_0)^k$ and $C = (\mathbb{N}_0)^k \setminus D$ (We say that C is the carrier if C)

Theorem. For each $r \in \mathcal{A}\setminus\{0\}$, $r = p_1m_1 + \cdots + p_km_k$ for some $(p_1, \dots, p_k) \in \mathcal{C}$.

The group H is an invariant for the numerical semigroups.

 $ed(G)=2,~G=[n;\{i\},\{b_i\}],~gcd(n,i)=1,~x=b_in+i,$ $\mathcal{M}=\{x\},~\mathcal{A}=\{na_S+s|s\in\mathbb{Z}_n\}=\{m_S|s\in\mathbb{Z}_n\}.$ The definition of G implies that

$$m_{t\odot i}=tx$$
,

and so F(G) = (n-1)x - n.

$$ed(G) = 3, G = [n; \{i, j\}, \{b_i, b_j\}], \gcd(n, i) = \gcd(n, j) = 1$$

$$x = b_i n + i, y = b_j n + j, \mathcal{M} = \{x, y\}, \text{ and }$$

$$\mathcal{A} = \{na_s + s | s \in \mathbb{Z}_n\} = \{m_s | s \in \mathbb{Z}_n\}.$$

The definition of G implies that $m_s = \min\{px + qy | p \odot i \oplus q \odot j = s\}$. If $p' \odot i = q' \odot j$ and p'x > q'y, then $p' \odot i \oplus q \odot j = q' \odot j \oplus q \odot j = (q' + q) \odot j$ and p'x + qy > (q' + q)y.

So, we examine the minimal pairs $(p,-q) \in H$, $p,q \in \mathbb{N}$, where minimal means that there is no $(p',-q') \in H$, $p',q' \in \mathbb{N}$ such that p' < p and q' < q.

Fact: Let (p, -q), (u, -v) be two such pairs satisfying: p > u, q < v and

$$0 < c < p, 0 < d < v \implies (c, -d) \notin \mathbf{H}$$
.

Then, simple calculation implies that pv - qu = n and

$$\{s \odot i \oplus r \odot j | (s,r) \in A_L \cup A_R\} = \mathbb{Z}_n$$
, where $A_L = \{(s,r) | 0 \le s < p, 0 \le r < v - q\}$ and $A_R = \{(s,r) | 0 \le s .$

Now, for $G = [n; \{i, j\}, \{b_i, b_j\}], x = b_i n + i, y = b_j n + j$, let p be the smallest such that $px > (p \odot i \odot j^{-1})y$ and v be the smallest such that $vy > (v \odot j \odot i^{-1})y$.

Again, a simple calculation implies that the pairs

$$(p, -p \odot i \odot j^{-1}), (v \odot j \odot i^{-1}, -v)$$

satisfy the condition of the above Fact.

So,
$$\mathcal{A} = \{sx + ry | (s, r) \in A_L \cup A_R\}$$
 and

$$F(G) = (p-1)x + (v-1)y - \min\{(v \odot j \odot i^{-1})x, (p \odot i \odot j^{-1})y\}.$$

How do we find the minimal pairs $(p, -q) \in H$?

We start with the minimal pairs (n, 0), (j, -1). The next minimal pair is:

$$\left(\left[\frac{n}{j}\right]j-n,-\left[\frac{n}{j}\right]\right).$$

If (p, -q), (u, -v) are two consecutive minimal pairs, with $u \neq 0$, then the next minimal pair is

$$\left(\left[\frac{p}{u}\right]u-p,-\left[\frac{p}{u}\right]v-q\right).$$