Generalizations of Thompson Group V using Synchronizing Automata

SandGAL 2019

Casey Donoven Binghamton University Joint with Feyishayo Olukoya n-ary Cantor Space

 $\mathcal{C}_n = \{0, 1, \dots, n-1\}^{\omega}$, the infinite words over an n letter alphabet

Let $v_1, v_2, \ldots v_k$ be a list of finite prefixes that 'partition' C_n , i.e. a maximal antichain with respect to lexicographical order.

Also let u_1, u_2, \ldots, u_k be another maximal antichain of the same length.

Build the function $f : C_n \to C_n$ where $f(v_i w) = u_i w$ for each i. We call f a finite prefix exchange.

Example: 0, 10, 11 and 01, 1, 00

Remark

Each finite prefix exchange has infinitely many representations.

Generalized Thompson Groups V_n

The group V_n is the group of all finite prefix exchanges on C_n .

- V_2 is commonly known as V.
- V_n is finitely presentable.
- V_n is simple when *n* is even.
- V_n has simple derived subgroup of index two when n is odd.

•
$$V_n \cong V_m$$
 iff $n = m$.

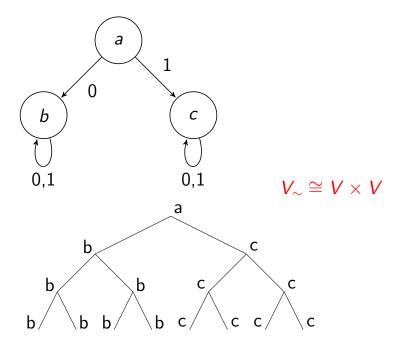
Subgroup Generating Relations

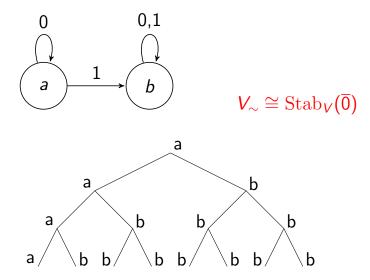
Let \sim be an equivalence relation on $\{0, 1, \dots, n-1\}^*$, the set of finite prefixes. We call $\sim \frac{\text{subgroup generating}}{\beta}$ when for all finite prefixes α and β ,

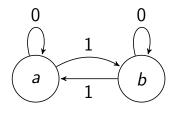
 $\alpha\sim\beta$ if and only if

for all
$$i \in \{0, 1, \dots, n-1\}, \alpha i \sim \beta i$$
.

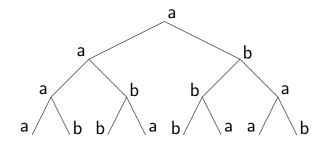
Relation Preserving Subgroups of V_n We denote the subgroup of V_n that preserves \sim by V_{\sim} .







 $V_{\sim}\cong V$



Theorem (Bleak, Cameron, Maissel, Navas, Olukoya) Automorphisms of V_n are precisely conjugations of V_n by homeomorphisms of C_n induced by bi-synchronizing automata.

Synchronizing Automata

An automaton A is synchronizing (at level k) if every word of length k is a reset word. Furthermore, A is <u>bi-synchronizing</u> if A and A^{-1} are both synchronizing.

Lemma

$$V_n^A \leq V_n$$
 if and only if A is synchronizing.

Theorem (D, Olukoya)

Let A be synchonizing. Then $V_n^A = V_{\sim}$ where \sim is constructed using A^{-1} .