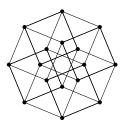
Congruences on ideals of semigroups and categories



James East

Centre for Research in Mathematics

SandGAL Politecnico di Milano, Cremona 12 June 2019

Joint work with Nik Ruškuc

Normal subgroups of the symmetric group S_n

Normal subgroups of the symmetric group S_n

There are three: $\{id_n\} \subseteq \mathcal{A}_n \subseteq \mathcal{S}_n$.

Normal subgroups of the symmetric group S_n

There are three: $\{id_n\} \subseteq \mathcal{A}_n \subseteq \mathcal{S}_n$.

Exceptions:

- $\blacktriangleright \ \{\mathsf{id}_0\} = \mathcal{A}_0 = \mathcal{S}_0\text{,}$
- $\blacktriangleright \ \{\mathsf{id}_1\} = \mathcal{A}_1 = \mathcal{S}_1,$
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \unlhd \mathcal{S}_2,$

Normal subgroups of the symmetric group S_n

There are three: $\{id_n\} \subseteq \mathcal{A}_n \subseteq \mathcal{S}_n$.

Exceptions:

- $\blacktriangleright \ \{\mathsf{id}_0\} = \mathcal{A}_0 = \mathcal{S}_0,$
- $\blacktriangleright \ \{\mathsf{id}_1\} = \mathcal{A}_1 = \mathcal{S}_1,$
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \unlhd \mathcal{S}_2,$
- $\blacktriangleright \{\mathsf{id}_4\} \unlhd K \unlhd \mathcal{A}_4 \unlhd \mathcal{S}_4.$

Normal subgroups of the symmetric group S_n

There are three: $\{id_n\} \subseteq A_n \subseteq S_n$.

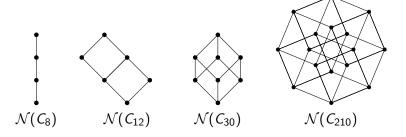
Exceptions:

- $\blacktriangleright \ \{\mathsf{id}_0\} = \mathcal{A}_0 = \mathcal{S}_0\text{,}$
- $\blacktriangleright \{\mathsf{id}_1\} = \mathcal{A}_1 = \mathcal{S}_1,$
- $\blacktriangleright \ \{\mathsf{id}_2\} = \mathcal{A}_2 \unlhd \mathcal{S}_2,$
- $\blacktriangleright \ \{\mathsf{id}_4\} \unlhd K \unlhd \mathcal{A}_4 \unlhd \mathcal{S}_4.$

General shape of $\mathcal{N}(\mathcal{S}_n)$:

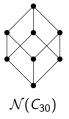
(Normal) subgroups of the cyclic group C_n

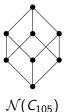
They correspond to the divisors of n.



Normal subgroups of the dihedral group D_n

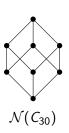
They correspond to the divisors of n (sort of); also depends on parity of n.

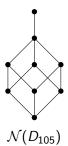




Normal subgroups of the dihedral group D_n

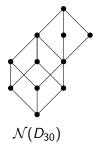
They correspond to the divisors of n (sort of); also depends on parity of n.

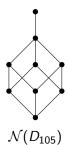




Normal subgroups of the dihedral group D_n

They correspond to the divisors of n (sort of); also depends on parity of n.





▶ Normal subgroups ⇔ quotient groups.

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky.

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- ▶ Groups and rings are lucky... Normally we need congruences.

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a semigroup S)

An equivalence σ on S such that:

▶ $(x,y) \in \sigma \Rightarrow (ax,ay), (xa,ya) \in \sigma \text{ for all } a \in S.$

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- ▶ Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

Definition (congruence on a category S)

An equivalence σ on (morphisms of) S such that:

- ▶ $(x,y) \in \sigma \Rightarrow (ax,ay), (xa,ya) \in \sigma$ when products defined,
- $(x,y) \in \sigma \Rightarrow \mathbf{d}(x) = \mathbf{d}(y) \text{ and } \mathbf{r}(x) = \mathbf{r}(y).$

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

▶ The set Cong(S) of all congruences forms a lattice.

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

▶ The set Cong(S) of all congruences forms a lattice.

Natural problem

Given S, find Cong(S).

- ▶ Normal subgroups ⇔ quotient groups.
- ▶ Ideals of rings ⇔ quotient rings.
- Groups and rings are lucky... Normally we need congruences.

Definition (congruence on a structure S)

An equivalence on S compatible with its operation(s).

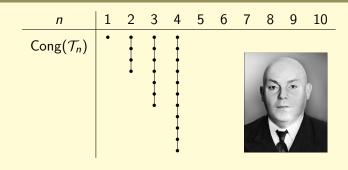
▶ The set Cong(S) of all congruences forms a lattice.

Natural problem

Given S, find Cong(S). Today S will usually be a semigroup.

▶ Let $\mathcal{T}_n = \text{full transformation semigroup on } \mathbf{n} = \{1, \dots, n\}$ = $\{\text{functions } \mathbf{n} \to \mathbf{n}\}.$

▶ Let \mathcal{T}_n = full transformation semigroup on $\mathbf{n} = \{1, ..., n\}$ = $\{\text{functions } \mathbf{n} \to \mathbf{n}\}.$



▶ Let \mathcal{T}_n = full transformation semigroup on $\mathbf{n} = \{1, ..., n\}$ = $\{\text{functions } \mathbf{n} \to \mathbf{n}\}.$

Theorem (Mal'cev, 1952)

n	1	2	3	4	5	6	7	8	9	10
$Cong(\mathcal{T}_n)$	•	İ	İ	İ						
CONS(711)		Ĭ	Ţ	Ţ				-		
		٠						6	6	
				<u> </u>				1		9
				+				X	1	
							1	1		
				•				1	V	

▶ What are these congruences?

Ideal of a semigroup S

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

$$R_I = \nabla_I \cup \Delta_S$$
.

Ideal of a semigroup S

A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

$$R_I = \nabla_I \cup \Delta_S$$
.

All of *I* is collapsed to a point.

Ideal of a semigroup S

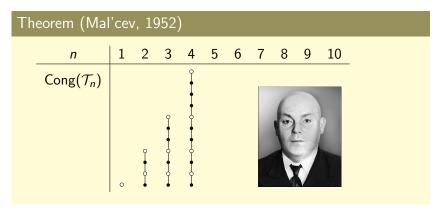
A nonempty subset I of S such that $IS \subseteq S$ and $SI \subseteq S$.

Rees congruence on a semigroup S

If I is an ideal of S, then we have a congruence:

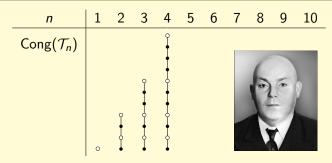
$$R_I = \nabla_I \cup \Delta_S$$
.

All of I is collapsed to a point. The rest of S is preserved.



► Rees congruences are white.

Theorem (Mal'cev, 1952)

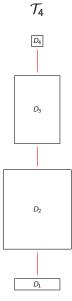


- ► Rees congruences are white.
- ▶ What are the other congruences?

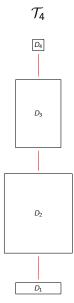
▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.

- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) = r \},$

- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$

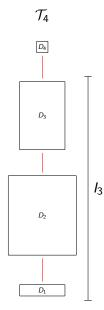


- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \mathsf{rank}(\alpha) = r \},$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \le r \}.$

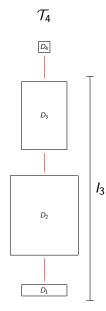


- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define

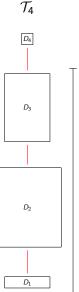
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \le r\}.$



- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \le r \}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.



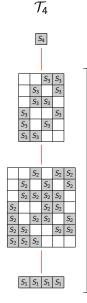
- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r \}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{l_1} \subset R_{l_2} \subset \cdots \subset R_{l_n} = \nabla$.



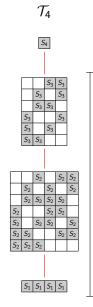
13

- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r\}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{I_1} \subset R_{I_2} \subset \cdots \subset R_{I_n} = \nabla$.
- ▶ Inside D_r are lots of little groups $\cong S_r$.

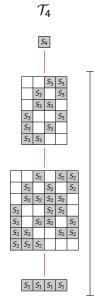
- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r\}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{l_1} \subset R_{l_2} \subset \cdots \subset R_{l_n} = \nabla$.
- ▶ Inside D_r are lots of little groups $\cong S_r$.



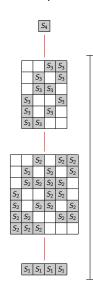
- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r\}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{l_1} \subset R_{l_2} \subset \cdots \subset R_{l_n} = \nabla$.
- ▶ Inside D_r are lots of little groups $\cong S_r$.
- ▶ Each $N ext{ ≤ } S_r$ gives another congruence R_N :



- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r\}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{l_1} \subset R_{l_2} \subset \cdots \subset R_{l_n} = \nabla$.
- ▶ Inside D_r are lots of little groups $\cong S_r$.
- ▶ Each $N ext{ ≤ } S_r$ gives another congruence R_N :
 - each S_r collapses to S_r/N ,

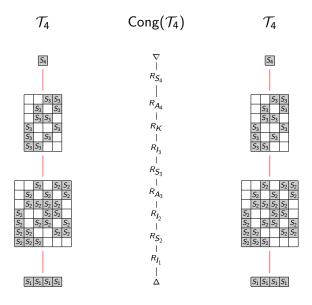


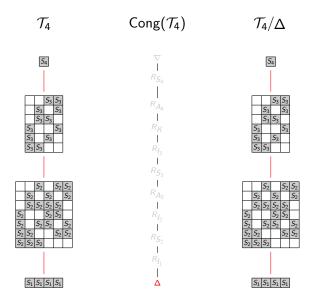
- ▶ For $\alpha \in \mathcal{T}_n$ define rank $(\alpha) = |\text{im}(\alpha)|$.
- ▶ For $1 \le r \le n$ define
 - $D_r = \{ \alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) = r \},$
 - $I_r = \{\alpha \in \mathcal{T}_n : \operatorname{rank}(\alpha) \leq r\}.$
- ▶ Ideals: $I_1 \subset I_2 \subset \cdots \subset I_n = \mathcal{T}_n$.
- ▶ Rees congruences: $R_{l_1} \subset R_{l_2} \subset \cdots \subset R_{l_n} = \nabla$.
- ▶ Inside D_r are lots of little groups $\cong S_r$.
- ▶ Each $N ext{ ≤ } S_r$ gives another congruence R_N :
 - each S_r collapses to S_r/N ,
 - ▶ all of I_{r-1} collapses to a point.

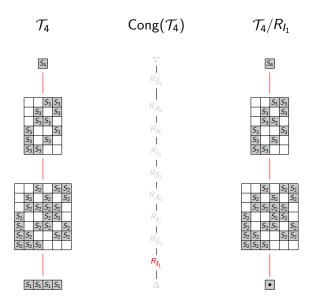


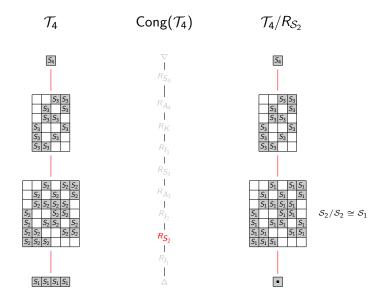
 I_3

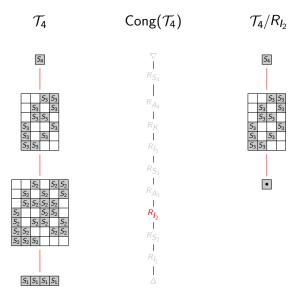
 \mathcal{T}_4

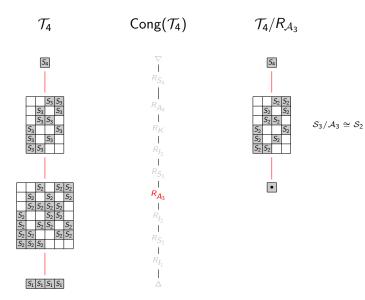


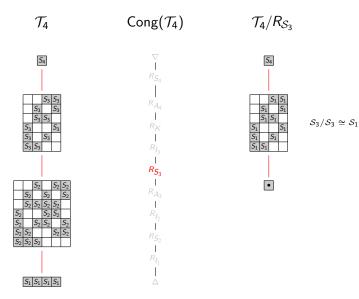


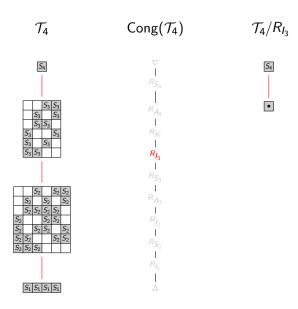


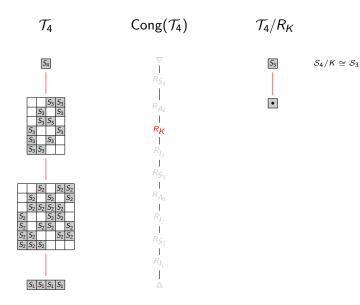


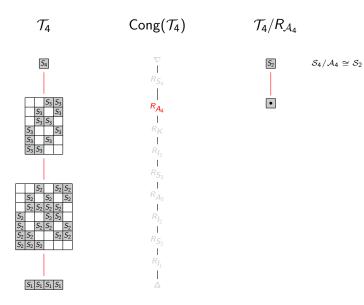


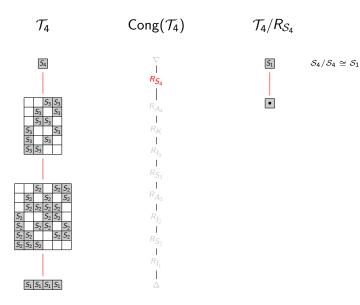


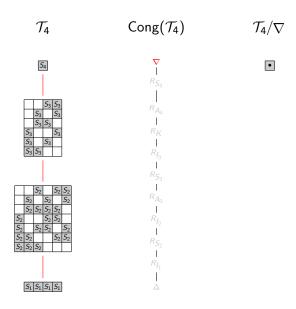












▶ An ideal I of S leads to a congruence R_I on S.

- ▶ An ideal I of S leads to a congruence R_I on S.
- ▶ But *I* is also a semigroup!

- ▶ An ideal I of S leads to a congruence R_I on S.
- ▶ But *I* is also a semigroup!
- ▶ What are the congruences on *I*?

- ▶ An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- ▶ What are the congruences on *I*?

Natural problem

Given S, find Cong(I) for each ideal I of S.

- ▶ An ideal I of S leads to a congruence R_I on S.
- ▶ But *I* is also a semigroup!
- ▶ What are the congruences on *I*?

Natural problem

Given S, find Cong(I) for each ideal I of S.

Natural problem

Can we describe $Cong(I_r)$, where $I_r = I_r(\mathcal{T}_n)$?

- ▶ An ideal I of S leads to a congruence R_I on S.
- But I is also a semigroup!
- ▶ What are the congruences on *I*?

Natural problem

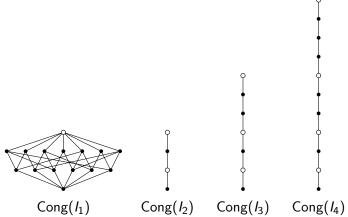
Given S, find Cong(I) for each ideal I of S.

Natural problem

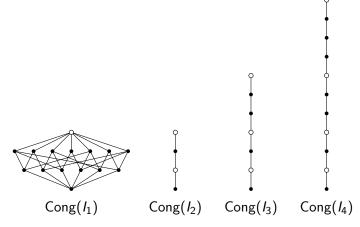
Can we describe $Cong(I_r)$, where $I_r = I_r(\mathcal{T}_n)$?

▶ Let's ask GAP!

Congruences on ideals of \mathcal{T}_4

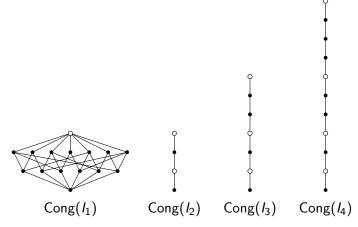


Congruences on ideals of \mathcal{T}_4



▶ I_1 is an n-element right-zero semigroup: $\mathsf{Cong}(I_1) \cong \mathfrak{Eq}_n$.

Congruences on ideals of \mathcal{T}_4



- ▶ I_1 is an n-element right-zero semigroup: $Cong(I_1) \cong \mathfrak{Eq}_n$.
- ▶ For $r \ge 2$, is Cong(I_r) just Cong(\mathcal{T}_n) chopped off?

Congruences on ideals of \mathcal{T}_n

Theorem

Yes!

Congruences on ideals of \mathcal{T}_n

Theorem

- ▶ Cong (I_1) \cong \mathfrak{Eq}_n .
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, \ q \leq n\} \cup \{\nabla_{I_r}\} \text{ for } 2 \leq r \leq n.$

- ▶ Cong (I_1) \cong \mathfrak{Eq}_n .
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, \ q \leq n\} \cup \{\nabla_{I_r}\} \text{ for } 2 \leq r \leq n.$
- Original proof strategy:
 - ▶ Deal with I_1 and I_r ($r \ge 2$) separately.
 - Use knowledge about $Cong(\mathcal{T}_n)$.

- ▶ Cong (I_1) \cong \mathfrak{Eq}_n .
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, \ q \leq n\} \cup \{\nabla_{I_r}\} \text{ for } 2 \leq r \leq n.$
- Original proof strategy:
 - ▶ Deal with I_1 and I_r ($r \ge 2$) separately.
 - ▶ Use knowledge about Cong(\mathcal{T}_n).
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...

- ▶ Cong (I_1) \cong \mathfrak{Eq}_n .
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, \ q \leq n\} \cup \{\nabla_{I_r}\} \text{ for } 2 \leq r \leq n.$
- Original proof strategy:
 - ▶ Deal with I_1 and I_r ($r \ge 2$) separately.
 - ▶ Use knowledge about Cong(\mathcal{T}_n).
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...
 - ► Treat smallest ideal(s) of *S*, then "lift" from one to the next.

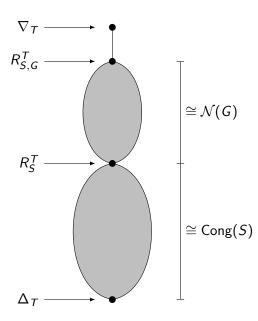
- ▶ $\mathsf{Cong}(I_1) \cong \mathfrak{Eq}_n$.
- ► Cong $(I_r) = \{R_N^{I_r} : N \leq S_q, \ q \leq n\} \cup \{\nabla_{I_r}\} \text{ for } 2 \leq r \leq n.$
- Original proof strategy:
 - ▶ Deal with I_1 and I_r ($r \ge 2$) separately.
 - ▶ Use knowledge about Cong(\mathcal{T}_n).
- Later: general machinery that works for many other semigroups and categories...
 - transformations, linear transformations, diagrams, braids...
 - ▶ Treat smallest ideal(s) of *S*, then "lift" from one to the next.
 - ▶ No need to know Cong(S) in advance.

Theorem

- ▶ Suppose T is a semigroup with a stable, regular maximum \mathscr{J} -class D_T .
- ▶ Suppose the ideal $S = T \setminus D_T$ has a stable, regular maximum \mathscr{J} -class D_S .
- ▶ Suppose $(x,y)^{\sharp} = \nabla_S$ for all $x \in D_S$ and $y \in S \setminus H_x$.
- ▶ Suppose every congruence on *S* is liftable to *T*.
- ▶ One more technical assumption.
- ▶ Let G be a group \mathcal{H} -class contained in D_T .

Then

$$\mathsf{Cong}(T) = \left\{ \Delta_{D_T} \cup \sigma : \sigma \in \mathsf{Cong}(S) \right\} \cup \left\{ R_{S,N}^T : N \unlhd G \right\} \cup \left\{ \nabla_T \right\}.$$

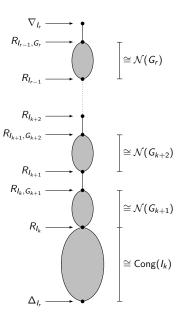


Theorem

- ▶ Let S be a stable, regular partial semigroup with a chain of \mathscr{J} -classes $D_0 < D_1 < \cdots$.
- ▶ The ideals of S are $I_r = D_0 \cup \cdots \cup D_r$ (and $I_\omega = S$ if the chain is infinite).
- ▶ Let G_q be a group \mathcal{H} -class in D_q .
- ▶ Suppose for some k every congruence on I_k is liftable to S.
- ▶ A technical property on I_k , and another on I_{k+1}, I_{k+2}, \dots

Then for any $r \geq k$ (including $r = \omega$),

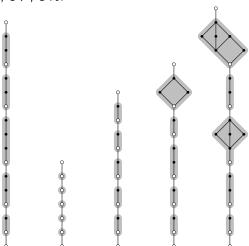
$$\mathsf{Cong}(I_r) = \left\{ \Delta_{I_r} \cup \sigma : \sigma \in \mathsf{Cong}(I_k) \right\}$$
$$\cup \left\{ R_{I_q,N}^{I_r} : k \le q < r, \ N \le G_{q+1} \right\} \cup \left\{ \nabla_{I_r} \right\}.$$



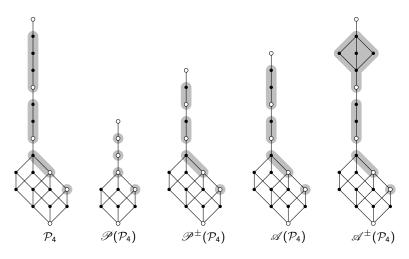
▶ Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$

- ▶ Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$
 - ▶ Subcategories preserving/reversing order/orientation: \mathcal{O} , \mathcal{OD} , \mathcal{OP} , \mathcal{OR} .

- ▶ Full transformation categories $\mathcal{T} = \mathcal{T}(\mathscr{C})$
 - ► Subcategories preserving/reversing order/orientation: O, OD, OP, OR.

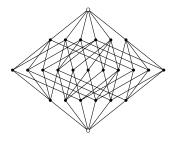


- ▶ Partition categories $\mathcal{P} = \mathcal{P}(\mathscr{C})$
 - ▶ Planar, anti-planar, annular, anti-annular subcategories.

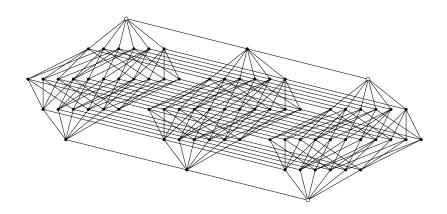


ightharpoonup Brauer categories ${\cal B}$

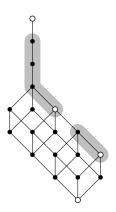
- ightharpoonup Brauer categories ${\cal B}$
- ▶ $I_0(\mathcal{B}_4)$: $\mathfrak{Eq}_3 \times \mathfrak{Eq}_3$



- ightharpoonup Brauer categories ${\cal B}$
- $I_2(\mathcal{B}_4)$: $(\mathfrak{Eq}_3 \times \mathfrak{Eq}_3) \times \mathbf{3}$

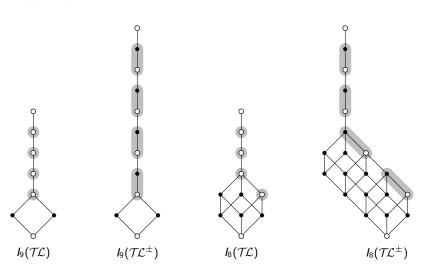


- ightharpoonup Brauer categories $\mathcal B$
- $ightharpoonup I_4(\mathcal{B}_4)$



- ightharpoonup Brauer categories $\mathcal B$
- ► (Anti-)planar/annular subcategories: Temperley-Lieb, Jones...

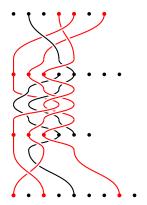
lacktriangle (Anti-)Temperley-Lieb categories \mathcal{TL} and \mathcal{TL}^\pm



lacktriangle (Anti-)Jones categories ${\cal J}$ and ${\cal J}^\pm$ $I_9(\mathcal{J}^\pm)$ $I_8(\mathcal{J})$ $I_9(\mathcal{J})$

► Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- ► Examples include linear categories and partial braid categories.



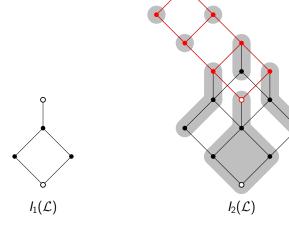
- ► Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- ► Examples include linear categories and partial braid categories.
- ► These have nontrivial congruences contained in ℋ.

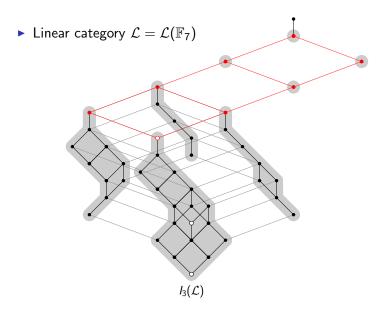
- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- Examples include linear categories and partial braid categories.
- ► These have nontrivial congruences contained in ℋ.
- We have general results to deal with (some of) these.

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- ► Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in ℋ.
- We have general results to deal with (some of) these.
- ► Congruences of form $R_{I_q,N_{q+1},N_{q+2},...}^{I_r}$, with $N_{q+1} \succeq N_{q+2} \succeq \cdots$

- Some semigroups/categories with chains of ideals don't fit the mould of the above theorems.
- ► Examples include linear categories and partial braid categories.
- ▶ These have nontrivial congruences contained in \mathcal{H} .
- We have general results to deal with (some of) these.
- ▶ Congruences of form $R_{I_q,N_{q+1},N_{q+2},...}^{I_r}$, with $N_{q+1} \succeq N_{q+2} \succeq \cdots$
- ► Can still build $Cong(I_{r+1})$ from $Cong(I_r)$.
 - It's just more complicated...

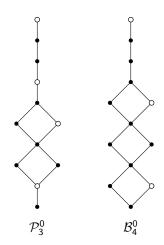
• Linear category $\mathcal{L} = \mathcal{L}(\mathbb{F}_7)$



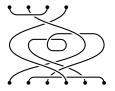


► Other categories:

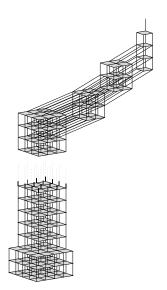
- ▶ Other categories:
 - twisted diagram categories



- ► Other categories:
 - twisted diagram categories
 - tangle/vine categories



- ► Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets



- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals

- Other categories:
 - twisted diagram categories
 - tangle/vine categories
 - transformations/diagrams with infinite underlying sets
- Some fit our general framework, some don't
- One-sided ideals
- Variants/sandwich semigroups

Grazie mille :-)

Congruences lattices of ideals in categories and (partial) semigroups

- ▶ James East and Nik Ruškuc
- ► Coming soon to arXiv...