AFFINE STEINER LOOPS

Giovanni Falcone, Palermo

(joint work with Agota Figula and Carolin Hannusch, Debrecen)

SandGAL, Cremona June 10th 2019

Steiner triple system: a pair S = (P, T) where

P is a set of elements, called **points**

T is a family of **triples** $\{a,b,c\}$ of points of P, such that

ANY TWO POINTS IN P BELONG EXACTLY TO ONE TRIPLE IN T

Basic example 1: lines in an affine geometry AG(d,3) over GF(3)

Basic example 2: lines in a projective geometry PG(d,2) over GF(2)

The term Steiner loop usually refers to the following structure:

- i) for a triple $\{a, b, c\}$ in T, define a + b = c
- ii) add an outer zero element $\Omega \notin P$
- iii) define $a + a = \Omega$

Note that, doing this for $\operatorname{PG}(d,2)$ one gets $\left(\mathbb{Z}/2\mathbb{Z}\right)^{d+1}$

Note that in PG(d, 2)

$$a + b + c = \Omega$$

... and in AG(d,3), as well!

A. Caggegi, GF, M. Pavone

On the additivity of block designs

J. Alg. Comb. 2017

The only STS which can be embedded in a group such that

$$a+b+c=0$$

are PG(d,2) and AG(d,3)

Projective Steiner loops vs Affine Steiner loops

i) choose a zero element $\Omega \in P$

ii) define -a through the triple $\{a, \Omega, -a\}$

iii) define a + b = -c through the triple $\{a, b, c\}$

iv) define $a + a + a = \Omega$

Hall triple systems: any two triples generate an AG(2,3)

$$x + y = -(-x - y)$$

Let S be a Steiner triple system and L_S the corresponding affine Steiner loop.

i) L_R is a subloop of L_S if and only if R is a Steiner triple subsystem of S containing Ω .

ii) If L_R is a normal subloop of L_S then each coset $x + L_R$ corresponds to a subsystem of S.

iii) If L_R is a normal subloop of L_S then the quotient loop Q yields a Steiner triple system S_Q .

 ${\cal S}$ a Steiner triple system

 L_S, Ω the corresponding affine Steiner loop.

$$\operatorname{Aut}(S)_{\Omega}=\operatorname{Aut}(L_S).$$

Any affine Steiner loop \mathcal{L}_S has a subnormal series

$$\Omega \unlhd \mathcal{L}_{S_1} \unlhd \cdots \unlhd \mathcal{L}_{S_t} = \mathcal{L}_S,$$

where the factors $\mathcal{L}_{S_{i+1}}/\mathcal{L}_{S_i}$ are simple affine Steiner loops.

If \mathcal{L}_S is a HTS, then \exists series with $\left|\mathcal{L}_{S_{i+1}}/\mathcal{L}_{S_i}\right|=3$.

|N|=w and |Q|=z two affine Steiner loops

 $\mathcal{Q}(N)$ the set of $w \times w$ latin squares with coefficients in the set N.

 $\Phi: Q \times Q \longrightarrow \mathcal{Q}(N)$, which maps the pair (\bar{x}, \bar{y}) to a latin square $\Phi_{\bar{x}, \bar{y}}: N \times N \longrightarrow N$, and fulfills the following conditions:

i)
$$\Phi_{\bar{y},\bar{x}}(y',x') = \Phi_{\bar{x},\bar{y}}(x',y');$$

ii) $\Phi_{\overline{0},\overline{0}}$ is the table of addition of N;

iii)
$$\Phi_{\bar{x},\bar{0}}(x',0') = x';$$

iv) $\Phi_{\bar{x},-\bar{x}}(x',\Phi_{\bar{y},\bar{z}}(y',z')) = 0$ if and only if $\Phi_{-\bar{z},\bar{z}}(\Phi_{\bar{x},\bar{y}}(x',y'),z') = 0$;

v)
$$\Phi_{\bar{x},-\bar{x}}(x',\Phi_{\bar{x},\bar{x}}(x',x')) = 0;$$

is called a Steiner operator.

N and Q two affine Steiner loops

 $\Phi: Q \times Q \longrightarrow \mathcal{Q}(N)$ a Steiner operator.

$$(\bar{x}, x') + (\bar{y}, y') = (\bar{x} + \bar{y}, x' \oplus y'),$$

where we denote, with abuse of notation,

$$x'\oplus y'=\Phi_{ar{x},ar{y}}(x',y')$$
 ,

then L is an affine Steiner loop of order v = wz,

having N as a normal subloop and such that L/N is isomorphic to Q.

Conversely, any affine Steiner loop L, having a normal subloop N and a quotient loop Q=L/N is isomorphic to the above one.

Choose a latin square on $\{-1,0,1\}$ for $\Phi_{\overline{z},\overline{z}}$ and $\Phi_{-\overline{z},-\overline{z}}$, and apply condition v) to $\Phi_{\overline{z},-\overline{z}}$:

$$egin{array}{|c|c|c|c|c|} \Phi_{\overline{z},\overline{z}} & \Phi_{\overline{z},-\overline{z}} \\ \hline \Phi_{-\overline{z},\overline{z}} & \Phi_{-\overline{z},-\overline{z}} \end{array}$$
 :

+	$ \hspace{.1cm} (\overline{z},-1)$	$(\bar{z},0)$	$(ar{z},1)$	$\mid (-\overline{z},-1) \mid$	$(-\overline{z},0)$	$(-ar{z},1)$
$\overline{(ar{z},-1)}$	$(-\overline{z},-1)$	$(-\overline{z},1)$	$(-\overline{z},0)$	$(\Omega,0)$	$(\Omega,1)$	$\overline{(\Omega,-1)}$
$(ar{z},0)$	$(-ar{z},1)$	$(-\overline{z},0)$	$(-ar{z},-1)$	$(\Omega,-1)$	$(\Omega,0)$	$(\Omega,1)$
$(ar{z},1)$	$(-\overline{z},0)$	$(-ar{z},-1)$	$(-\overline{z},1)$	$(\Omega,1)$	$(\Omega,-1)$	$(\Omega,0)$
$\overline{(-ar{z},-1)}$	$(\Omega,0)$	$(\Omega,-1)$	$(\Omega,1)$	$(\bar{z},1)$	$\overline{(ar{z},-1)}$	$\overline{(\overline{z},0)}$
$(-\overline{z},0)$	$(\Omega,1)$	$(\Omega,0)$	$(\Omega,-1)$	$(ar{z},-1)$	$(\bar{z},0)$	$(ar{z},1)$
$(-\bar{z},1)$	$(\Omega,-1)$	$(\Omega,1)$	$(\Omega,0)$	$(\bar{z},0)$	$(ar{z},1)$	$(\bar{z},-1)$

Let S be a STS(n). Then

$$\lambda_x = (\Omega, x, -x)(v_1, v_2, v_3, ..., v_j)(-v_j, ..., -v_3, -v_2, -v_1)...$$

$$\lambda_x = (\Omega, x, -x)\sigma_x.$$

If σ_x has the $(v_1, v_2, v_3, ..., v_j)$ -cycle, then the STS has the following blocks:

$$\{x, v_1, -v_2\}, \{x, v_2, -v_3\}, \dots, \{x, v_{j-1}, -v_j\}, \{x, v_j, -v_1\}.$$

Thus σ_x has also the j-cycle

$$(-v_1,\ldots,-v_3,-v_2,-v_1)$$

If S is a simple STS(n) containing a Veblen point V, then

$$\mathcal{L}_{\mathcal{S}} = A_n / A_{n-1}$$

1) V is the neutral element Ω of $\mathcal{L}_{\mathcal{S}}$ if and only if, for any $x \neq \Omega$,

$$\rho_x = (\Omega, x, -x)(p_1, q_1)(-q_1, -p_1)\cdots(p_{\frac{n-3}{4}}, q_{\frac{n-3}{4}})(-q_{\frac{n-3}{4}}, -p_{\frac{n-3}{4}}).$$

2) If $V \neq \Omega$, then

$$\begin{cases} \rho_{V} = (\Omega, x, -x)(p_{1}, q_{1})(-q_{1}, -p_{1}) \cdots (p_{\frac{n-3}{4}}, q_{\frac{n-3}{4}})(-q_{\frac{n-3}{4}}, -p_{\frac{n-3}{4}}) \\ \rho_{-V} = (\Omega, -x, x)(p_{1}, -q_{1})(q_{1}, -p_{1}) \cdots (p_{\frac{n-3}{4}}, -q_{\frac{n-3}{4}})(q_{\frac{n-3}{4}}, -p_{\frac{n-3}{4}}). \end{cases}$$

Let S be a STS(13). Then

$$\mathcal{L}_{\mathcal{S}} = A_{13}/A_{12}$$

 S_1 and S_2 the two non-isomorphic STS(13) as they are defined in [Limbos], p. 152-153. In S_1 take $\lambda_1=(0,1,4)(2,7,3,10,6)(5,8,11,9,12)$, in S_2 take $\lambda_2=(0,1,4)(2,12,5,10,6)(3,8,11,9,7)$.

In both cases, $\mathcal{L}_{\mathcal{S}} = A_{13}/A_{12}$ by Jordan's theorem.

Let S be a simple STS(n), such that $n \neq \frac{q^a-1}{q-1}$, for any prime power q.

Then $\mathcal{L}_{\mathcal{S}} = A_n/A_{n-1}$.

This follows from a celebrated theorem by Guralnik.