EXPANSIONS OF $(\mathbb{Z}_p \times \mathbb{Z}_q, +)$

Stefano Fioravanti June 2019, SANDGAL19 Institute for Algebra Austrian Science Fund FWF P29931

Clones

Definition

A clone (closed set of operations) on a set A is a subset of $\bigcup_{n \in \mathbb{N}} A^{A^n}$ which contains all the projections and is closed under composition.

Definition

Let $\mathbf{A} = (A, +, (f_i)_{i \in I})$ be an algebra. A +-clone of \mathbf{A} is a clone which contains +.

Clones

Definition

A clone (closed set of operations) on a set A is a subset of $\bigcup_{n \in \mathbb{N}} A^{A^n}$ which contains all the projections and is closed under composition.

Definition

Let $\mathbf{A} = (A, +, (f_i)_{i \in I})$ be an algebra. A +-clone of \mathbf{A} is a clone which contains +.

Our goal:

Theorem (SF)

Let p and q be different prime numbers. Then there are only finitely many expansions of $(\mathbb{Z}_p \times \mathbb{Z}_q, +)$.

Known results

- [1] E. Aichinger, P. Mayr, Polynomial clones on groups of order pq, in: Acta Mathematica Hungarica, Volume 114, Number 3, Page(s) 267-285, 2007. (All 17 clones containing $(\mathbb{Z}_p \times \mathbb{Z}_q, +, (1, 1))$);
- [2] A. A. Bulatov, Polynomial clones containing the Mal'cev operation of the groups Z_{p²} and Z_p × Z_p, in: Mult.-Valued Log. 8(2) (2002) 193-221 (Multiple-valued logic in Eastern Europe).
 (All infinitely many clones containing (Z_p × Z_p, +, (1, 0), (0, 1));
- [3] S. Kreinecker, Closed function sets on groups of prime order, Manuscript, arXiv:1810.09175, 2018.

(All finitely many clones containing $(\mathbb{Z}_p, +)$).

Notations

We investigate clones containing $Clo(\mathbb{Z}_p \times \mathbb{Z}_q, +)$. Hence +-clones.

Notations

We investigate clones containing $Clo(\mathbb{Z}_p \times \mathbb{Z}_q, +)$. Hence +-clones.

We will always consider the functions of a clone of an expansions of $\mathbb{Z}_p \times \mathbb{Z}_q$ as functions from $\mathbb{Z}_p^n \times \mathbb{Z}_q^n$ split in the two components.

 $f(x_1, ..., x_n, y_1, ..., y_n) = (f_1(x_1, ..., x_n, y_1, ..., y_n), f_2(x_1, ..., x_n, y_1, ..., y_n)).$

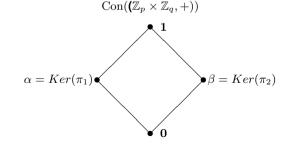
Notations

We investigate clones containing $Clo(\mathbb{Z}_p \times \mathbb{Z}_q, +)$. Hence +-clones.

We will always consider the functions of a clone of an expansions of $\mathbb{Z}_p \times \mathbb{Z}_q$ as functions from $\mathbb{Z}_p^n \times \mathbb{Z}_q^n$ split in the two components.

$$f(x_1,...,x_n,y_1,...,y_n) = (f_1(x_1,...,x_n,y_1,...,y_n), f_2(x_1,...,x_n,y_1,...,y_n)).$$

We will always consider congruence lattices that are sublattices of:



Possible cases of labelled congruence lattices

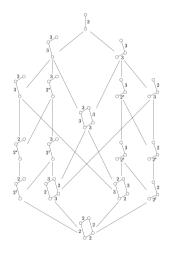


Figure: (P. Mayr's picture) Simple factors are labelled 2 if they are abelian and 3 otherwise. 2^{\dagger} means the factor is central; 2*means it is not central. 4/13

(p,q)-linear closed clonoids

Definition

Let p and q be powers of different primes, and let \mathbb{F}_p and \mathbb{F}_q be two fields of orders p and q. A (p,q)-linear closed clonoid is a non-empty subset C of $\bigcup_{n\in\mathbb{N}} \mathbb{F}_p^{\mathbb{F}_q^n}$ with the following properties:

(1) for all
$$f, g \in C^{[n]}$$
 and $a, b \in \mathbb{F}_p$:
 $af + bg \in C^{[n]}$;
(2) for all $f \in C^{[m]}$ and $A \in \mathbb{F}_q^{m \times n}$:
 $g : (x_1, \dots, x_n) \mapsto f(A \cdot (x_1, \dots, x_n)^t)$ is in $C^{[n]}$

A characterization

Theorem (SF 2018)

Let p and q be powers of different primes. Let $\prod_{i=1}^{n} p_i^{k_i}$ be the prime factorization of the polynomial $g = x^{q-1} - 1$ in $\mathbb{F}_p[x]$. Then the number of distinct (p, q)-linear closed clonoids is $2 \prod_{i=1}^{n} (k_i + 1)$ and the lattice of all the (p, q)-linear closed clonoids, $\mathbf{L}(p, q)$, is isomorphic to:

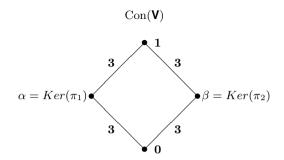
$$\mathbf{2} imes \prod_{i=1}^{n} \mathbf{C}_{k_i+1}$$

General expression of functions of $\mathbb{Z}_p \times \mathbb{Z}_q$

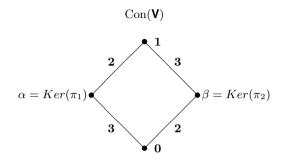
Lemma

Let p and q be distinct prime numbers. Then for every function f from $\mathbb{Z}_p^n \times \mathbb{Z}_q^n$ to $\mathbb{Z}_p \times \mathbb{Z}_q$ there exist two sequences of functions $\{f_{\mathbf{m}}\}_{\mathbf{m} \in \mathbb{Z}_p^n}$ from \mathbb{Z}_q^n to \mathbb{Z}_p and $\{s_{\mathbf{h}}\}_{\mathbf{h} \in \mathbb{Z}_q^n}$ from \mathbb{Z}_p^n to \mathbb{Z}_q such that for all $\mathbf{x} \in \mathbb{Z}_p^n$, $\mathbf{y} \in \mathbb{Z}_p^n$:

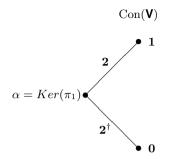
$$f(\mathbf{x},\mathbf{y}) = \Big(\sum_{\mathbf{m}\in\mathbb{Z}_p^n} f_{\mathbf{m}}(\mathbf{y})\mathbf{x}^{\mathbf{m}} \ , \ \sum_{\mathbf{h}\in\mathbb{Z}_q^n} s_{\mathbf{h}}(\mathbf{x})\mathbf{y}^{\mathbf{h}}\Big).$$



$$f(\mathbf{x}, \mathbf{y}) = \Big(\sum_{\mathbf{m} \in \mathbb{Z}_p^n} a_{\mathbf{m}} \mathbf{x}^{\mathbf{m}} , \sum_{\mathbf{h} \in \mathbb{Z}_q^n} b_{\mathbf{h}} \mathbf{y}^{\mathbf{h}} \Big).$$

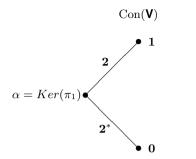


$$f(\mathbf{x}, \mathbf{y}) = \Big(\sum_{\mathbf{m} \in \mathbb{Z}_p^n} a_{\mathbf{m}} \mathbf{x}^{\mathbf{m}} , \mathbf{b} \mathbf{y} + d\Big).$$



$$f(\mathbf{x}, \mathbf{y}) = \Big(\mathbf{a}\mathbf{x} + c , \ \mathbf{b}\mathbf{y} + f_0(\mathbf{x})\Big).$$

8/13



$$f(\mathbf{x}, \mathbf{y}) = \Big(\mathbf{a}\mathbf{x} + c \ , \ \mathbf{f}_1(\mathbf{x})\mathbf{y} + f_0(\mathbf{x})\Big).$$

8/13

Case of independent algebras

Definition

Two algebras A and B of the same variety V are **independent** if there exists a binary term in Clo(V) such that $A \models t(x, y) \approx x$ and $B \models t(x, y) \approx y$.

Case of independent algebras

Definition

Two algebras A and B of the same variety V are **independent** if there exists a binary term in Clo(V) such that $A \models t(x, y) \approx x$ and $B \models t(x, y) \approx y$.

Theorem (E. Aichinger, P. Mayr 2015; SF)

Let p and q be distinct prime numbers. Then for every group expansion \mathbf{V} of $\mathbb{Z}_p \times \mathbb{Z}_q$ which respects the congruences $\{0, \alpha, \beta, 1\}$ it follows that:

- (1) $\operatorname{Clo}(\mathbf{V}) = \operatorname{Clo}(\mathbf{V}_1) \times \operatorname{Clo}(\mathbf{V}_2)$ for some \mathbf{V}_1 and \mathbf{V}_2 group expansions of \mathbb{Z}_p , and \mathbb{Z}_q ;
- (2) $\operatorname{Clo}(\mathbf{V}_2)$ is composed by affine functions $\Leftrightarrow [\alpha, \alpha] = 0$;
- (3) $\operatorname{Clo}(\mathbf{V}_1)$ is composed by affine functions $\Leftrightarrow [\beta, \beta] = 0$.

Number of expansions in the cases: $Con(\mathbb{Z}_p \times \mathbb{Z}_q, +, \mathcal{C}) = \{0, \alpha, \beta, 1\}$

t(x,y) = mx + ny where

$$m \equiv_p 1 \qquad n \equiv_p 0$$
$$m \equiv_q 0 \qquad n \equiv_q 1$$

Number of expansions in the cases: $Con(\mathbb{Z}_p \times \mathbb{Z}_q, +, \mathcal{C}) = \{0, \alpha, \beta, 1\}$

t(x,y) = mx + ny where

$$m \equiv_p 1 \qquad n \equiv_p 0$$
$$m \equiv_q 0 \qquad n \equiv_q 1$$

Theorem (SF, S. Kreinecker 2018)

Let p and q be distinct prime numbers. Let $n(x) := \sharp$ of divisors of x - 1. Then there are (n(q) + 3) * (n(p) + 3) many group expansions of $\mathbb{Z}_p \times \mathbb{Z}_q$ which respect $\{0, \alpha, \beta, 1\}$. Moreover (n(q) + 3) * 2 of these expansions respect $[\alpha, \alpha] = 0$, (n(p) + 3) * 2 of these expansions respect $[\beta, \beta] = 0$, and 4 respect both.

Cases:
$$Con(\mathbb{Z}_p \times \mathbb{Z}_q, +, \mathcal{C}) \supseteq \{0, \alpha, 1\}$$
 and $[\alpha, \alpha] = 0$

Lemma

Let p and q distinct prime numbers. Then C is a clone of $\mathbb{Z}_p \times \mathbb{Z}_q$ which respects $\{\alpha, 1, 0\}$ and $[\alpha, \alpha] = 0$ if and only if for every n-ary function $f \in C$ there exist: a sequence $\{a_{\mathbf{m}}\}_{\mathbf{m}\in\mathbb{Z}_p^n}$ from \mathbb{Z}_p , $\mathbf{f}_1:\mathbb{Z}_p^n\mapsto\mathbb{Z}_q^n$, and $\mathbf{f}_0:\mathbb{Z}_p^n\mapsto\mathbb{Z}_q$ such that:

$$orall \mathbf{x} \in \mathbb{Z}_p^n, \mathbf{y} \in \mathbb{Z}_q^n \quad f(\mathbf{x}, \mathbf{y}) = \Big(\sum_{\mathbf{m} \in \mathbb{Z}_p^n} a_{\mathbf{m}} \mathbf{x}^{\mathbf{m}} , \ \mathbf{f}_1(\mathbf{x}) \mathbf{y} + f_0(\mathbf{x}) \Big).$$

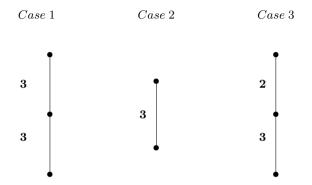
Theorem (SF)

Let *p* and *q* be distinct prime numbers. Then the number *n* of expansions of $\mathbb{Z}_p \times \mathbb{Z}_q$ which respect $\{\alpha, 1, 0\}$ and $[\alpha, \alpha] = 0$ satisfies:

 $n \leq |L(q,p)|^2 |L(p)|\text{,}$

where $\mathbf{L}(q, p)$ is the lattice of all (q, p)-linear closed clonoids and $\mathbf{L}(p)$ is the lattice of all +-clones on \mathbb{Z}_p .

Other cases



Theorem (K. Kearnes, A. Szendrei)

If **A** is a finite algebra with a *k*-parallelogram term (k > 1) such that **A** generates a residually small variety, then the relational clone of compatible relations of **A** is generated by relations of arity $\leq c$, where

 $c = max(k, c_0)$ and $c_0 = |A|^{|A|+1}(B(|A|+1) - 1).$

where B(n) denotes the *n*th Bell's number.

Theorem (K. Kearnes, A. Szendrei)

If **A** is a finite algebra with a *k*-parallelogram term (k > 1) such that **A** generates a residually small variety, then the relational clone of compatible relations of **A** is generated by relations of arity $\leq c$, where

 $c = max(k, c_0)$ and $c_0 = |A|^{|A|+1}(B(|A|+1) - 1).$

where B(n) denotes the *n*th Bell's number.

Theorem (SF)

Let p and q be different prime numbers. Then there are only finitely many expansions of $(\mathbb{Z}_p \times \mathbb{Z}_q, +)$.

Theorem (K. Kearnes, A. Szendrei)

If A is a finite algebra with a *k*-parallelogram term (k > 1) such that A generates a residually small variety, then the relational clone of compatible relations of A is generated by relations of arity $\leq c$, where

 $c = max(k, c_0)$ and $c_0 = |A|^{|A|+1}(B(|A|+1) - 1).$

where B(n) denotes the *n*th Bell's number.

Theorem (SF)

Let p and q be different prime numbers. Then there are only finitely many expansions of $(\mathbb{Z}_p \times \mathbb{Z}_q, +)$.

THANK YOU!!!!