On the connection between Mealy and Moore automata via *d*-adic dynamics

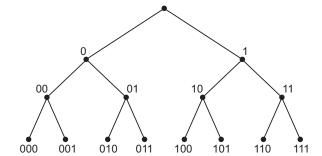
Rostislav Grigorchuk (joint with Dmytro Savchuk)

Texas A&M University

June 9, 2019

The Rooted *d*-ary Tree

- Let X = {0, 1, ..., d − 1} be a finite alphabet and X* − the set of all finite words over X.
- Label the vertices of a rooted *d*-ary tree by elements from X^*



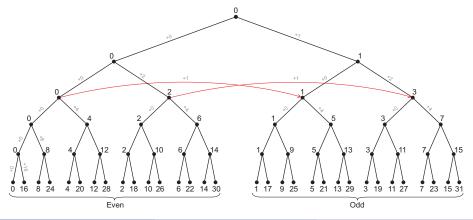
• We will consider automorphisms and endomorphisms of this tree

The n^{th} Level Viewed as $\mathbb{Z}/(d^n\mathbb{Z})$

• Identify the n^{th} level of X^* with the ring $\mathbb{Z}/(d^n\mathbb{Z})$ by

 $X^n \ni x_0 x_1 \dots x_{n-1} \longleftrightarrow x_0 + dx_1 + \dots + d^{n-1} x_{n-1} \in \mathbb{Z}/(d^n \mathbb{Z})$

• The boundary X^{∞} of the tree is then identified with the ring \mathbb{Z}_d of *d*-adic integers.



Rostislav Grigorchuk (Texas A&M Universit

Proposition

a) A transformation $f : \mathbb{Z}_d \to \mathbb{Z}_d$ defines an endomorphism of X^* if and only if it is 1-Lipschitz b) A transformation $f : \mathbb{Z}_d \to \mathbb{Z}_d$ defines an automorphism of X^* if and only if it is an isometry. Hence $Aut(X^*) = Isom(\mathbb{Z}_d)$.

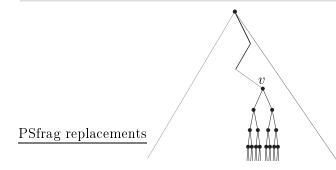
How to describe endomorphisms?

Definition

Let g be an endomorphism of X^* and $v \in X^*$. For any word $w \in X^*$, we have g(vw) = g(v)w' for some $w' \in X^*$. The map $g|_v \colon X^* \to X^*$ given by

$$g|_v(w) = w'$$

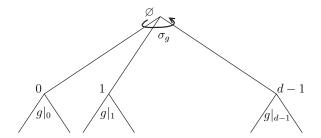
defines an endomorphism of X^* and is called the section of g at v.



The Action of an Endomorphism

Thus, each endomorphism of X^* can be described as

$$g = (g|_0,g|_1,\ldots,g|_{d-1})\sigma_g$$



Definition

An endomorphism g of X^{*} is called finite state if $|\{g|_{v} : v \in X^{*}\}| < \infty$.

Rostislav Grigorchuk (Texas A&M Universit

d-adic dynamics and Automata

Maps $\mathbb{Z}_d \to \mathbb{Z}_d$?

Any continuous $f: \mathbb{Z}_d \to \mathbb{Z}_d$ can be described by its van der Put series:

$$f(x) = \sum_{n \ge 0} \frac{B_n^f}{\chi(n, x)},$$

 $B_n^f \in \mathbb{Z}_d$ are computed as:

$$B_n^f = \begin{cases} f(n), & \text{if } 0 \le n < d, \\ f(n) - f(n_), & \text{if } n \ge d, \end{cases}$$

where for $n = x_0 + x_1d + \cdots + x_td^t$ with $x_t \neq 0$ we define $n_- = x_0 + x_1 \cdot d + \cdots + x_{t-1}d^{t-1}$, and

 $\chi(n, x) = \begin{cases} 1, & d\text{-ary expansion of } n \text{ is a prefix of } x, \\ 0, & \text{otherwise.} \end{cases}$

Denote $\lfloor \log_d n \rfloor = t$.

Proposition (Anashin-Khrennikov-Yurova'11)

A map $f : \mathbb{Z}_d \to \mathbb{Z}_d$ is 1-Lipschitz (i.e. defines an endomorphism of X^*) \Leftrightarrow

$$f(x) = \sum_{n\geq 0} b_n^f d^{\lfloor \log_d n \rfloor} \chi(n, x).$$

 b_n^f – reduced van der Put coefficients.

Proposition (Anashin-Khrennikov-Yurova'11)

A map $f : \mathbb{Z}_d \to \mathbb{Z}_d$ is 1-Lipschitz (i.e. defines an endomorphism of X^*) \Leftrightarrow

$$f(x) = \sum_{n\geq 0} b_n^f d^{\lfloor \log_d n \rfloor} \chi(n, x).$$

 b_n^f – reduced van der Put coefficients.

Theorem (Anashin'12)

An endomorphism $f : \mathbb{Z}_d \to \mathbb{Z}_d$ is finite state \Leftrightarrow

(a) $\{b_n^f\}_{n\geq 0}$ is d-automatic

(b) b_n^f is preperiodic for each n (equivalently $b_n^f \in \mathbb{Z}_d \cap \mathbb{Q}$).

Automatic Sequences

Definition

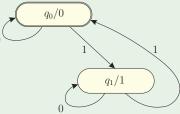
We say the sequence $(a_n)_{n\geq 0}$ over a finite alphabet A is *d*-automatic if it can be generated by a finite Moore automaton. To compute a_n :

- write the (reversed) d-ary expansion w of n
- feed w to the automaton
- $a_n =$ label of the ending state

Example

The Thue-Morse sequence 0110 1001 10010110 1001011001001...

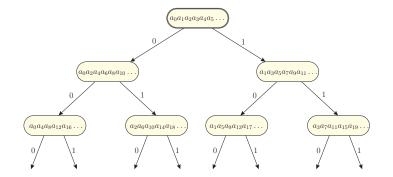
n	[<i>n</i>] ₂	t _n	n	[<i>n</i>] ₂	tn
0	0	0	4	001	1
1	1	1	5	101	0
2	01	1	6	011	0
3	11	0	7	111	1



Alternative definition via subsequences

Theorem

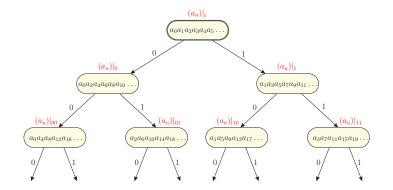
A sequence $(a_n)_{n\geq 0}$ over an alphabet A is d-automatic if and only if the collection of its subsequences of the form $\{(a_{j+n\cdot d^i})_{n\geq 0} \mid i\geq 0, 0\leq j< d^i\}$, called the d-kernel, is finite.



Alternative definition via subsequences

Theorem

A sequence $(a_n)_{n\geq 0}$ over an alphabet A is d-automatic if and only if the collection of its subsequences of the form $\{(a_{j+n\cdot d^i})_{n\geq 0} \mid i\geq 0, 0\leq j< d^i\}$, called the d-kernel, is finite.



Rostislav Grigorchuk (Texas A&M Universit

d-adic dynamics and Automata

Proposition

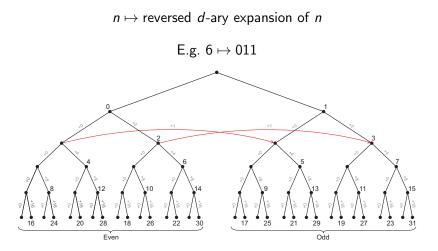
A sequence $(a_n)_{n\geq 0}$ over an alphabet A is d-automatic if and only if the collection of its sections $\{(a_n)_{n\geq 0}|_{v}: v \in X^*\}$ is finite.

Proposition

A sequence $(a_n)_{n\geq 0}$ over an alphabet A is d-automatic if and only if the collection of its sections $\{(a_n)_{n\geq 0}|_{v}: v \in X^*\}$ is finite.

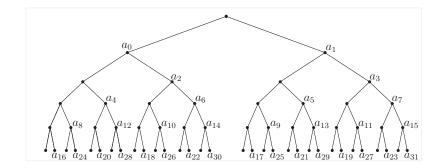
One can visualize it geometrically using the portrait of a sequence on a rooted tree.

First, label SOME vertices of the tree by integers:



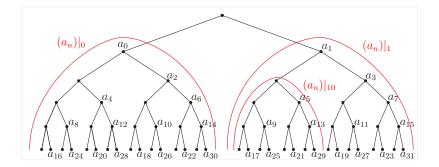
Definition

The portrait of a sequence $(a_n)_{n\geq 0}$ over an alphabet A is a *d*-ary rooted tree X^* where the vertex *n* is labelled by a_n .



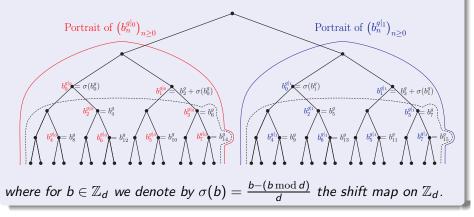
Definition

The portrait of a sequence $(a_n)_{n\geq 0}$ over an alphabet A is a *d*-ary rooted tree X^* where the vertex *n* is labelled by a_n .



Theorem (Grigorchuk-S.'19+)

Suppose $g \in \text{End } X^*$. Then the reduced van der Put coefficients of the sections $g|_x$ are defined as follows:

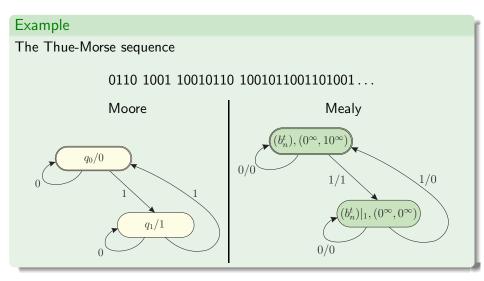


This gives a CONSTRUCTVE proof of Anashin's automaticity result.

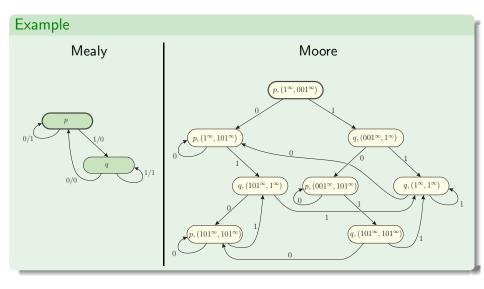
Theorem (Grigorchuk,S.)

- Let g ∈ End(X*) be defined by a finite Mealy automaton A. Then the underlying oriented graph of the Moore automaton B defining (b^g_n)_{n≥0} (possibly non-minimized) covers the underlying oriented graph of A.
- Let g ∈ End(X*) be such that (b^g_n)_{n≥0} is defined by finite Moore automaton B. Then the underlying oriented graph of the Mealy automaton A defining g (possibly non-minimized) covers the underlying oriented graph of B.

Automata associated to the Thue-Morse sequence



Automata associated to the Lamplighter group



Thank You!