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Dedekind, 1880

G is a group, |G| = n <∞
G x1 . . . xi . . . xn
xn ...
... ...
xj · · · · · · xk= xi · xj
...
x1

Cayley

table KG

P = det (KG) is homogeneous, degP = n.

Theorem: G is abelian ⇒

detKG = (a1
1x1 + . . .+ a1

nxn) · · · (an1x1 + . . .+ annxn)



G = (Z3,+)

Cayley table

0 1 2

G x y z
2 z z x y
1 y y z x
0 x x y z

det (KZ3
) = x3+y3+z3−3xyz = (x+y+z)(x+εy+ε2z)(x+ε2y+εz)

ε = e
2π
3 i

Character table

(0) (1) (2)
χ1 1 1 1
χ2 1 ε ε2

χ3 1 ε2 ε



The noncommutative case

1. Dedekind: S3, Q8

2. Frobenius, 1896: G is ANY finite group:

Theorem: det (KG) = P
n1
1 · · ·P

nk
k , Pi is irreducible, deg(Pi) =

ni, i = 1, . . . , k.

χj(xi) =
∂Pi
∂xj

(0, . . . ,0,1,0, . . . ,0)

j-th position



Theorem: [Frobenius, 1896]

T : Mn(C)→Mn(C)

— linear, bijective

det (T (A)) = detA ∀A ∈Mn(C)

⇓

∃P,Q ∈ GLn(C),det (PQ) = 1 :

T (A) = PAQ ∀A ∈Mn(C)

or

T (A) = PAtQ ∀A ∈Mn(C)



Theorem: [Dieudonné, 1949]

Ωn(F)is the set of singular matrices

T : Mn(F) → Mn(F) — linear, bijective, T (Ωn(F)) ⊆

Ωn(F)
⇓

∃P,Q ∈ GLn(F)

T (A) = PAQ ∀A ∈Mn(F)

or

T (A) = PAtQ ∀A ∈Mn(F)



The quantity of Linear Preservers for a given matrix in-

variant is a measure of its complexity. Indeed, to com-

pute the invariant for a given matrix, we reduce it to a

certain good form, where computations are easy.

det (A) =
∑

σ∈Sn
(−1)na1σ(1) · · · anσ(n)

• Computations of det require ∼ O(n3) operations

per (A) =
∑

σ∈Sn
a1σ(1) · · · anσ(n)

• Computations of per require

∼ (n− 1) · (2n− 1) multiplicative operations (Raiser for-

mula).



The explanation:

There are just few linear preservers of permanent in com-

parison with the determinant. Indeed,

Theorem: [Marcus, May] Linear transformation T is

permanent preserver. Then

T (A) = P1D1AD2P2 ∀A ∈Mn(F), or

T (A) = P1D1A
tD2P2 ∀A ∈Mn(F)

here Di are invertible diagonal matrices, i = 1,2,

Pi are permutation matrices, i = 1,2.



• Group theory

Question Is it possible that two non-isomorphic finite

groups have the same group determinant?

Theorem: [E. Formanek, D. Sibley] A group determi-

nant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singular-

ity preserver theorem to the direct products of matrix

algebras.



Preserve Problems

ρ : Mn(R)→ S is a certain matrix invariant

T : Mn(R)→Mn(R)

ρ(T (A)) = ρ(A) ∀A ∈Mn(R)

T =?

PPρ T

R



Let F be a field

∅ 6= S ⊆Mn(F) T (S) ⊆ S
ρ : Mn(F)→ F ∀A ∈Mn(F) ρ(T (A)) = ρ(A)
∼: Mn(F)2→ {0,1} A ∼ B ⇒ T (A) ∼ T (B)

∀A,B ∈Mn(F)
P – property in Mn(F) A ∈ P ⇒ T (A) ∈ P

T =?
The standard solution

There are P,Q ∈ GLn(F):

T (X) = PXQ ∀X ∈Mn(F)

or

T (X) = PXQ ∀Xt ∈Mn(F)



Basic methods to investigate PPs

1. Matrix theory

2. Theory of classical groups

3. Projective geometry

4. Algebraic geometry

5. Differential geometry

6. Dualisations

7. Tensor calculus

8. Functional identities



Monotone transformations

Minus order relation

Let S be a semigroup, I(S) be the set of idempotents

in S.

Wagner order on I(S): let f, e ∈ I(S).

Then e6̄f iff ef = fe = e.



a ∈ S is (von Neumann) regular in S if a ∈ aSa.

A solution of axa = a is called an inner inverse and is

denoted by a−. The set of all inner inverses: a{1}.

A solution of xax = x is called an outer inverse. The set

of all outer inverses: a{2}.

a{1,2} = a{1} ∩ a{2} — reflexive inverses.



Hartwig-Nambooripad order on regular elements:

let a, b ∈ S be regular. Then a6̄b iff ∃ a− ∈ a{1}:

aa− = ba− and a−a = a−b.

Can we tackle this order using matricial tools on Mn(F)?

Rank-subtractivity: A,B ∈Mn(F).

Then A6̄B iff rk (B −A) = rkB − rkA.



Lemma: [Mitsch, 86] For a regular semigroup S TFAE

• a = eb = bf for some e, f ∈ E(S);

• a = aa′b = ba′′a for some a′, a′′ ∈ a{1,2};

• a = aa′b = ba′a for some a′ ∈ a{1,2};

• ∃ a′ ∈ a{1,2}: a′a = a′b, aa′ = ba′ [Hartwig, 80];

• a = ab′b = bb′a, a = ab′a for some b′ ∈ b{1,2};

• a = axb = bxa, a = axa, b = bxb for some x ∈ S;

• a = eb and aS ⊆ bS for some idempotent e: aS1 = eS1,

see also [Nambooripad, 80];

• a = xb = by, xa = a for some x, y ∈ S.



Definition.

• aJ b iff a = eb = bf for some e, f ∈ E(S) – Jones rel.;

• a <− b iff a−a = a−b and aa− = ba− for some a− ∈ a{1};

• aN b iff a = axa = axb = bxa for some x ∈ S –

Nambooripad relation;

• aMb iff a = xb = by, xa = a for some x, y ∈ S1 – Mitsch

• aPb iff a = pa = pb = bp = ap for some p ∈ S1 – Petrich

• aHb iff a = bxb for some x ∈ S1 and b{1} ⊆ a{1} –

Hartwig relation.

Theorem: For any S, it holds that N ⊆ J ⊆ M, (N is

stronger than J which is stronger than M), N , M, P

are partial orders, M, P are always reflexive, but N is

reflexive only on regular semigroups.



For regular semigroups, all these relations coincide.

Lemma: S is a semigroup. Then <−= N .

Characterization via outer inverses:

Theorem: [Guterman, Mary, Shteyner] Let a, b ∈ S.

TFAE

• aN b;
• a = bb=b for some b= ∈ b{2};
• a = ab=a = ab=b = bb=a for some b= ∈ b{2};
• a = ab=l a = ab=l b = bb=r a for some b=l , b

=
r ∈ b{2};

• a = axa = axb = bya for some x, y ∈ S;

• a = axa = axb = bxa for some x ∈ S.



By definition, for a, b ∈ S, aN b implies that a is regular.

To compare non-regular elements, we define the relation

Γ as follows:

Definition. Let a, b ∈ S. Then aΓb if there exist x, y ∈ S1

such that a = axb = bya and b{1} ⊆ a{1}.

Γ ⊆ H since aΓb implies a = byaxb for a, b ∈ S.



Definition. Let a, b ∈ S. We define Γl, Γr, ΓP as follows:

• If b is not regular, then aΓlb (resp. aΓrb, aΓPb) iff ∃

x ∈ S1: a = axb (resp. ∃ y ∈ S1: a = bya, ∃ x ∈ S1:

a = axb = bxa);

• If b is regular, then aΓlb (resp. aΓrb, aΓPb) iff ∃ x, y ∈

S1: a = axa = axb = bya (resp. ∃ x, y ∈ S1: a = aya =

axb = bya, ∃ x ∈ S1: a = axa = axb = bxa).

Theorem: [Guterman, Mary, Shteyner]

1. ΓP = Γl ∩ Γr.

2. S is a regular semigroup. Then Γl = ΓP = Γr.



Let S be a semigroup.

Definition. Involution ∗ on S is a bijection a→ a∗ ∀a ∈ S:

1) (a∗)∗ = a,

2) (ab)∗ = b∗a∗ ∀a, b ∈ S.

∗ is a proper involution if

a∗a = a∗b = b∗b = b∗a︸ ︷︷ ︸

⇓

a = b

We consider only semigroup with the proper involution,

∗-semigroups.



Examples: Boolean rings, groups, proper ∗-rings, in par-

ticular, Mn(R), Mn(C).



Definition. For a, b ∈ S a Drazin Star Partial Order is

the following relation:

a
∗
6 b iff

 a∗a = a∗b
aa∗ = ab∗

Theorem: [M.P. Drazin] If S is a proper ∗-semigroup

then

∗
6 is


reflexive
anti− symmetric
transitive

Matrix partial orderings are important due to their sta-

tistical applications, S = Mn(F)



LetM(A) denotes the linear span of columns of a matrix

A ∈Mmn(F).

Left ∗-order and right ∗-order:

Definition. [J. Baksalary, S. Mitra, LAA, 1991] For A,B ∈Mmn(C)

we say that A∗6 B iff A∗A = A∗B and M(A) ⊆M(B).

Definition. [J. Baksalary, S. Mitra] For A,B ∈Mmn(C) we say

that A 6∗B iff AA∗ = BA∗ and M(A∗) ⊆M(B∗).



Definition. [J. Baksalary, J. Hauke] For A,B ∈Mmn(F) we say

that A
�
6 B, iff 

Im (A) ⊆ Im (B)

Im (A∗) ⊆ Im (B∗)

AA∗A = AB∗A

This relation is called a diamond order.



Definition. A group generalized inverse matrix A] for

a fixed matrix A ∈ Mn(F) is defined to be a reflexive

generalized inverse matrix (the solution of both AXA =

A and XAX = X) which commutes with the matrix A.

Definition. A matrix A is said to be of index k if

ImA % ImA2 % . . . % ImAk = ImAk+1 = . . ..

Theorem: [S.-K. Mitra] A ∈ Mn(F) has a group gener-

alized inverse matrix iff A is of index 1.



Definition. [S.-K. Mitra] Let A ∈ Mn(F) be a matrix of

index 1 and B ∈ Mn(F) be an arbitrary matrix. We say

that A
]
6 B iff

AA] = BA] = A]B.

Definition. The core-nilpotent decomposition of a square

matrix A ∈ Mn(F ) is A = CA + NA, where NA is nilpo-

tent matrix and CA is a matrix of index 1, moreover

CANA = NACA = 0. ∃!

Definition. [R. Hartwig, S.-K. Mitra]

A
cn
6 B, iff

 CA
]
6 CB

NA 6̄ NB



Another way to define the orders

Let S be a semigroup, S1 — monoid generated by S.

Definition. a, d ∈ S. a is invertible along d if ∃ b ∈ S:

bad = d = dab and b ∈ dS1 ∩ S1d.

Theorem: [Mary] If ∃ b then b ∈ a{2} and b is unique.

It is denoted by a−d.

Another characterization:

Theorem: [Mary] a ∈ S is invertible along d ∈ S if and

only if ∃ b ∈ S: bab = b, bS1 = dS1, S1b = S1d. In this

case a−d = b.



Theorem: [Mary] Let a, d ∈ S. Then a−d satisfies

a−d = d(ad)# = (da)#d

and belongs to the double centralizer (double commu-

tant) of {a, d}. Also ∃ a−d ⇔ d ∈ dadS1 ∩ S1dad.

For specific choices of d we have:

Theorem: [Mary]

1. a# = a−a,

2. a† = a−a
∗
,

3. aD = a−a
k

for k ∈ N,

here a ∈ S has a Drazin inverse aD if a positive power ak

of a is group invertible, then aD = (ak+1)
#
ak.



Let Θ : S → P(S) =
⋃
a∈S

a{2} – the set of all outer

inverses of elements of S – be (multi-valued) function

satisfying Θ(a) ⊆ a{2} ∀a ∈ S.



Definition. Let a, b ∈ S.

1. aΓΘb if ∃ bl, br ∈ Θ(b): a = ablb = bbra and the

corresponding inner inverses satisfy b{1} ⊆ a{1},
2. If b is not regular, then aΓΘ

l b if ∃ br ∈ Θ(b): a = abrb.

3. If b is regular, then aΓΘ
l b if ∃ bl, br ∈ Θ(b):

a = abla = ablb = bbra.

4. If b is not regular, then aΓΘ
r b if ∃ br ∈ Θ(b): a = bbra.

5. If b is regular, then aΓΘ
r b if ∃ bl, br ∈ Θ(b):

a = abra = ablb = bbra.

6. If b is not reg., ⇒ aΓΘ
P b if ∃ d ∈ Θ(b): a = adb = bda.

7. If b is regular, then aΓΘ
P b if ∃ d ∈ Θ(b):

a = aba = adb = bda.

It happens that ΓΘ is the intersection of ΓΘ
l and ΓΘ

r .



Theorem: [Guterman, Mary, Shteyner]

1. The relations NΘ, ΓΘ
l , ΓΘ

r , ΓΘ
P , ΓΘ are partial orders.

2. NΘ ⊆ ΓΘ
P ⊆ ΓΘ

l ∩ ΓΘ
r = ΓΘ.



The following functions Θ are of special interest:

• Θ : b 7→ b{2}. In this case we have NΘ = N =<−

• Θ# : b 7→ {b#}, the group inverse of b, or ΘD : b 7→

{bD}, the Drazin inverse of b

• Let ∆ : S → P(S). We pose Θ∆ : b 7→ {b−d|d ∈ ∆(b)}.

Here, for b ∈ S, ∆(b) is not included in b{2} in general,

but Θ(b) is.

To simplify the notations, we omit Θ, namely, use <−∆

(resp. N−∆, Γ−∆, Γ−∆
l , Γ−∆

r , Γ−∆
P ) instead of <Θ∆

(resp. NΘ∆, ΓΘ∆, ΓΘ∆
l , ΓΘ∆

r , ΓΘ∆
P ). For instance,

if ∆# is such that ∆#(b) = b for each b ∈ S, then

Θ∆# = Θ#.



Let C(x) = {y ∈ S|yx = xy} the centralizer of x.

Lemma: [Guterman, Mary, Shteyner] Let ∆ : S → P(S)

satisfies ∆(x) ⊂ C(x). Then a <−∆ b implies ab = ba.

Corollary: [Guterman, Mary, Shteyner] Let ΘC : b 7→

C(b). Then <−C is the sharp partial order.



(S, ∗<) is a partial ordered structure

Problem

What are the morphisms of this ordered structure that

are monotone?

T : S → S

∀a, b ∈ S, a
∗
< b⇒ T (a)

∗
< T (b)

Below S = Mn(F), F is a field,

T : Mn(F)→Mn(F)



Definition.

T : Mm,n(F)→Mm,n(F)

preserves the order < (or, T is monotone wrt <), if

A < B ⇒ T (A) < T (B)

Definition.

T : Mm,n(F)→Mm,n(F)

strongly preserves the order < (strongly monotone wrt

<), if

A < B ⇔ T (A) < T (B)



P. G. Ovchinnikov:

Theorem: Let H be a Hilbert space, dimH ≥ 3, B(H)

be the algebra of bounded linear operators on H, T :

I(B(H))→ I(B(H)) be a poset automorphism. Then ei-

ther T (P ) = APA−1 ∀ P ∈ I(B(H)) or T (P ) = AP ∗A−1

∀ P ∈ I(B(H)). Here A is a semi-linear bijection H → H

if dimH < ∞, and continuous invertible linear or conju-

gate linear operator, otherwise.



P. G. Ovchinnikov:

Corollary: P is the set of idempotents in Mn(C), n ≥ 3.

T : P → P is a bijection strongly monotone wrt 6̄. Then

∃ a semi-linear bijection L : Cn→ Cn such that

T (X) = LXL−1 or T (X) = LX∗L−1



The questions arising

• Can we work with the transformation on the whole

Mn(F) ?

• Can we classify just monotone transformations, which

are not strongly monotone?

• Can we work with some other order relations?



Linear case

Matrix deformation approach

Definition. For a given binary matrix relation

∼ : Mn(F)×Mn(F)→ {0,1}

we consider a deformation which is a subset

LF(∼) ⊆Mn(F),

LF(∼) := {X ∈Mn(F)|∃0 6= R,S ∈Mn(F) :
∀λ ∈ F R ∼ (λX + S)}.

WHY DO WE NEED THIS NOTION?



The properties

Lemma: ∼1,∼2 are binary relations on Mn(F) and for

all A,B ∈Mn(F)

A ∼1 B ⇒ A ∼2 B

Then LF(∼1) ⊆ LF(∼2).

Lemma: T : Mn(F) → Mn(F) is linear and bi-

jective; T preserves ∼

(∀A,B ∈Mn(F) if A∼B then T (A)∼T (B))

Then

T (LF(∼)) ⊆ LF(∼)

.



Why LF(∼) is better
than ∼ ?

Theorem: F is a field of complex or real numbers. Then

Ωn(F) ⊆ LF(
∗
<).

the set of singular matrices

Proof. Based on the properties of the singular value de-

composition.



Definition. [R. Hartwig, K. Nambooripad]

The Minus-order: A6̄B if rk (B −A) = rkB − rkA.

Corollary: There is a following set inclusion:

Ωn(F) ⊆ LF(
∗
<) ⊆ LF(6̄) ⊆ Ωn(F)

Lemma 4

Theorem 5

direct computations

⇓
LF(

∗
<) = Ωn(F)



Proposition. Let T : Mn(F) → Mn(F) be a linear and

bijective transformation which is monotone with respect

to the Drazin star partial order. Then T is a singularity

preserver

i.e., T (Ωn(F)) ⊆ Ωn(F).

Corollary:

Proposition +
Dieudonné
Theorem



All linear maps which are monotone w.r.t. the Drazin

star partial order are standard!

What are the standard linear transformations which leave

the star-order invariant?



Theorem: Bijective linear T : Mmn(F)→Mmn(F) mono-

tone w.r.t.
∗
6 is of the form

T (X) = αPXQ or,

if m = n, T (X) = αPXtQ,

P,Q ∈ GLn(F) are unitary, α ∈ F∗.



Definition. [J. Baksalary, J. Hauke] Let A,B ∈Mmn(F) we say

that A
σ
6 B, if A6̄B and σ(A) ⊆ σ(B).

Definition. [J. Gross]

For A,B ∈Mmn(F) it is said that A
σ1
6 B, if

A6̄B and σ1(A) ≤ σ1(B).

Here σ(A) and σ1(A) denote nonzero singular values (the

square roots of the eigenvalues of AA∗) and, respectively,

maximal singular value of complex or real matrices.



Bijective monotone maps

P. Šemrl:

Theorem: Pn ⊂Mn(F) is a set of all idempotents. |F| ≥

3, n ≥ 3,

T : Pn→ Pn
is a bijection monotone wrt 6̄. Then ∃ϕ : F → F —

automorphism and A ∈ GLn(F):

T (X) = AXϕA−1 ∀X ∈ P

or
T (X) = A(Xϕ)tA−1 ∀X ∈ P

Xϕ = [ϕ(xij)] for X = [xij]



• Can a semigroup became a group ?

• Does bijectivity follow from monotonicity?

• What happens in the non-linear case?



Additive monotone maps

Definition. �1 on Mmn(F) is weaker than �2, if for all

A,B ∈Mmn(F)

A �2 B ⇒ A �1 B.

In this case �2 is stronger than �1.



Examples.
∗
6 ⇒ ∗6, 6∗
∗
6 ⇒

σ1
6 ,

σ
6

∗
6 ⇒

�
6

∗6, 6∗ ⇒ 6̄
σ1
6 ,

σ
6 ⇒ 6̄
�
6 6⇒ 6̄

6̄ 6⇒
�
6



Definition. A partial order � on Mmn(F) is called unitary

invariant, if for arbitrary matrices A,B ∈ Mmn(F) the

inequality A � B is equivalent to UAV � UBV for all

U ∈ Un(F), V ∈ Um(F).

Examples. All aforesaid order relations are unitary in-

variant.



The partial order relations on Mmn(F), we

have defined, behave well with respect to

the rank function on matrices, namely:

F

F

A

B

r-th component which
consists of matrices of the

fixed rank equal to r∀A,B ∈Mmn(F)

(i) if A � B, then rkA ≤ rkB;

(ii) if A � B and rkA = rkB, then A = B.

Definition. We say that an order relation � on Mmn(F)

is regular, if it satisfies (i), (ii) and also

(iii) � is unitary invariant

(iv) � is weaker than Drazin order



Regular orders and corresponding monotone trans-
formations

Let T be fixed.

We find and fix some matrix Z ∈Mm,n(F) such that the

following two conditions hold simultaneously:

a) rkZ = 1 and

b) for all X ∈Mm,n(F), which satisfy the condition rkX =

1, we have

rkT (X) ≤ rkT (Z).



Let Z = ζUZE1,1VZ be a singular value decomposition

of Z.

We define T̂Z : Mn(F)→Mn(F) by

T̂Z(X) = T (ζUZXVZ) for all X ∈Mn(F)

Then

a) ∀A, rkA = 1 ⇒ rk T̂Z(A) ≤ rk T̂Z(E1,1).

b) T̂Z is additive and monotone with respect to the or-

der �.



Theorem: [Alieva, Guterman] Let � be a regular partial

order relation on Mmn(F). Assume that

T : Mmn(F)→Mmn(F)

be an additive monotone map with respect to order �.

Then T has one of the following forms:

1) T (X) = PXϕQ for all X ∈Mm,n(F),

2) (if m = n) T (X) = P (Xϕ)tQ for all X ∈Mn(F),

3) T (X) = 0 for all X ∈Mmn(F),

here ϕ : F → F is a field endomorphism, Xϕ = [ϕ(xi,j)],

where X = [xi,j],

P ∈ GLm(F), Q ∈ GLn(F).



Corollaries If additive T is monotone wrt regular � then

T is ”bijective” up to ϕ.

If F has the property: all non-zero endomorphisms are

automorphisms, then T is automatically bijective.

Theorem: Additive transformations over C monotone

wrt any of
∗
6, ∗6, 6∗,

�
6,

σ
6,

σ1
6, then T is automatically

bijective.

In comparison with linear case: there are additive non-

bijective monotone wrt minus-order transformations, in

particular, over C



Examples of orders which are not unitary invariant:

Definition. [S.-K. Mitra] Let A ∈ Mn(F) be a matrix of

index 1 and B ∈ Mn(F) be an arbitrary matrix. We say

that A
]
6 B iff

AA] = BA] = A]B.

Definition. [R. Hartwig, S.-K. Mitra]

A
cn
6 B, iff

 CA
]
6 CB

NA 6̄ NB



Non-regular orders

I. Bogdanov, A. Guterman,

M. Efimov, A. Guterman

Lemma: Let A1, . . . , An ∈Mn(F). Then TFAE:

1. 0
]
< A1

]
< · · ·

]
< An

2. 0
cn
< A1

cn
< · · ·

cn
< An

3. ∀i = 1, . . . , n Ai are diagonalizable matrices of rank i

in the same basis.

Definition. Let A ∈Mn(F)

D(A) :=

B ∈Mn(F)|A,B are simultaneously

diagonalizable


A is not diagonalizable ⇒ D(A) = ∅



Definition. T : Mn(F) → Mn(F) preserves simultaneous

diagonalizability if

T (D(A)) ⊆ D(T (A))

Corollary: T additive, monotone with respect to
cn
6 or

cn
< ⇒ T preserves simultaneous diagonalizability.

Theorem: [Omladič, Šemrl] F = C, n > 3, linear T :

Mn(F) → Mn(F) preserves the set of diagonalizable ma-

trices iff T (A) = cPAP−1 + f(A)I

or T (A) = cPAtP−1+f(A)I for some P ∈ GLn(F), c ∈ F∗,

f – linear functional on Mn(F), f(I) 6= −c.

using Motzkin-Taussky Theorem



Theorem: Let F be a field,

char F 6= 2, n ≥ 2 be integer. Then additive T : Mn(F)→

Mn(F) is monotone with respect to either
]
6 or

cn
6 partial

order iff either T ≡ 0 or there exist α ∈ F∗, P ∈ GLn(F)

and endomorphism ϕ : F→ F such that T has one of the

following forms:

T (X) = αPXϕP−1 ∀X ∈Mn(F)

or

T (X) = αP (Xϕ)tP−1 ∀X ∈Mn(F)

Example Let |F| = n = 2. Then linear transformation

defined on basis by T (Eii) = Eii, T (Eij) = I+Eij if i 6= j

is monotone with respect to
]
6,

cn
6, but non-standard.



What about non-linear transformations?



What about non-linear transformations?

Example Let I1n(F) be the set of matrices of index 1,

M1 = Mn(F) \ I1n(F).

Let T (A) = A for all A ∈ I1n(F),

T |M1
is an arbitrary bijection.

Then T is bijective, T is monotone with respect to
]
6,

but T can be non-standard.



What about non-linear transformations?

Example Let I1n(F) be the set of matrices of index 1,

M1 = Mn(F) \ I1n(F).

Let T (A) = A for all A ∈ I1n(F),

T |M1
is an arbitrary bijection.

Then T is bijective, T is monotone with respect to
]
6,

but T can be non-standard.

We need some additional assumptions on T or F or spe-

cial subset S ⊂Mn(F)!



Spectral orthogonal decompositions

Counting functions:

Definition. kA : F× N→ Z+ :

for λ ∈ F and r ∈ N, kA(λ, r) = number of Jordan blocks

of A of the size r corresponding to λ.

If there are no Jordan blocks of A with λ of the size r

then kA(λ, r) = 0.

KA : F → Z+ is the total number of Jordan blocks of A

corresponding to λ,

KA(λ) =
∞∑
r=1

kA(λ, r).



Definition. Let F be any field, A ∈Mn(F), A = CA+NA

be the core-nilpotent decomposition of A. The maps

SiA : F→Mn(F), i = 1,2,3 are

S1
A(λ): if λ = 0, S1

A(0) = NA

if λ 6= 0, S1
A(λ) = Xλ is such that Xλ

]
6 A,

KXλ(λ) = KA(λ) and Spec (Xλ) = {λ,0}.

S2
A(λ) = S1

A+I(λ+ 1)− S1
A(λ) for all λ ∈ F;

S3
A(λ) = S1

A(λ)− λS2
A(λ) for all λ ∈ F.



Theorem. [Efimov, Guterman] These definitions are

correct.

Lemma. Let F be any field, A ∈Mn(F), λ ∈ F. Then ∃!

Xλ ∈ I1n(F), Xλ
]
6 A, KXλ(λ) = KA(λ) and Spec (Xλ) =

{λ,0}.



Properties of these maps:

Theorem. [Efimov, Guterman] Let A ∈Mn(F).

1. If λ /∈ Spec (A) ⊆ F then SiA(λ) = 0 for i = 1,2,3.

2. rk (S2
A(λ)) = degχA(z − λ) is the multiplicity of λ in

the characteristic polynomial χA.

3. SiA(λ) ⊥ SjA(µ) for all λ 6= µ, i, j = 1,2,3.

4. SiA(λ)S2
A(λ) = S2

A(λ)SiA(λ) = SiA(λ) for all λ ∈ F,

i = 1,2,3.

5. S2
A(λ) is idempotent for all λ ∈ F.

6. S3
A(λ) is nilpotent for all λ ∈ F.

7. A =
∑
λ∈F

S1
A(λ) =

∑
λ∈F

(λS2
A(λ) + S3

A(λ)), I =
∑
λ∈F

S2
A(λ).



8. For any polynomial f ∈ F[t] it holds that

f(A) =
∑
λ∈F

(f(λ)S2
A(λ)+

f ′(λ)

1!
S3
A(λ)+. . .+

f(n−1)(λ)

(n− 1)!
(S3
A(λ))n−1).

9. F[A] = {f(A)}f∈F[t] = 〈{S2
A(λ), S3

A(λ), . . . , (S3
A(λ))n−1}λ∈F〉,

and nonzero matrices in {S2
A(λ), S3

A(λ), . . . , (S3
A(λ))n−1}λ∈F

are linearly independent.

10. If λ ∈ F then SiA(λ) ∈Mn(F), i = 1,2,3.

11. If A commutes with some B ∈ Mn(F), then SiA(λ)

commutes with B for all λ ∈ F and i = 1,2,3.



12. If IndA = 1 and A is orthogonal to some B ∈Mn(F)

then

a) all matrices SiA(λ) are orthogonal to B,

b) SiA+B(λ) = SiA(λ) + SiB(λ) for λ 6= 0 and i = 1,2,3.

c) SiA(λ) ⊥ SjB(µ) for all λ, µ ∈ F \ {0}, i, j = 1,2,3.

13. If A
]
6 C for some C ∈Mn(F), then for all Λ ⊂ F \ {0}

we have
∑
λ∈Λ

SiA(λ)
]
6

∑
λ∈Λ

SiC(λ), i = 1,2. In particular,

SiA(λ)
]
6 SiC(λ) for λ 6= 0 and i = 1,2.



Definition. The decompositions

A =
∑
λ∈F

S1
A(λ) =

∑
λ∈F

(λS2
A(λ) + S3

A(λ))

are called spectrally orthogonal decompositions of A.



Theorem. [Efimov, Guterman] Let F be algebraically

closed, n ≥ 3, T : Dn(F) → Dn(F) be monotone with

respect to
]
6-order and injective. Then ∃ P ∈ GLn(F),

0 6= f : F→ F, and injective σ : F→ F satisfying σ(0) = 0

such that

T (A) =
∑
λ∈F

σ(λ)P−1(S2
A(λ))fP for all A ∈ Dn(F)

or

T (A) =
∑
λ∈F

σ(λ)P−1[(S2
A(λ))f ]tP for all A ∈ Dn(F)



Theorem. [Efimov, Guterman] Let F be algebraically

closed, let n ≥ 3, and T : Dn(F) → Dn(F) be strongly

monotone with respect to
]
<-order. Then T is injective

and the result of previous theorem holds.



Theorem. [Efimov, Guterman] Let F be algebraically

closed,

M = {A ∈ I1n(F) | ∑
λ∈F

KA(λ) = 1} be the set of matrices

with the unique Jordan block,

T : I1n(F)→ I1n(F) be bijective and strongly monotone with

respect to
]
<-order with additional assumption

T (λI) = λI for all λ ∈ F.

Then for any A ∈ I1n(F) \M there exists PA ∈ GLn(F) such

that T (A) = P−1
A APA.

Here T can be any bijection on M !



Definition. Let A,B ∈ Mn(F). The matrices A and B

are called pairwise orthogonal, A ⊥ B, if AB = BA = 0.

Definition. The map T : I1n(F)→ I1n(F) is 0-additive, if for

any matrices A,B ∈ I1n(F) with A ⊥ B it holds:

(i) T (A) ⊥ T (B);

(ii) T (A+B) = T (A) + T (B).

Theorem. [Efimov, Guterman] Let F be algebraically

closed and T : I1n(F) → I1n(F) be bijective. Then T is

strongly monotone with respect to
]
<-order if and only if

both T and T−1 are 0-additive.



Remark.

1. On I1n(F), in particular, on Dn(F),
]
6- and

cn
6-orders

are equivalent.

2. No linearity or additivity is assumed in above Theo-

rems.



Theorem. Let n ≥ 3, T : Mn(C)→Mn(C) is injective and

continuous, one of a, b, c is true:

a) T is monotone with respect to
]
6-order;

b) T is monotone with respect to
cn
6-order;

c) T is 0-additive map.

Then there are P ∈ GLn(C), α ∈ C \ {0} such that

T (X) = αP−1XP for all X ∈Mn(C) or

T (X) = αP−1XtP for all X ∈Mn(C) or

T (X) = αP−1XP for all X ∈Mn(C) or

T (X) = αP−1XtP for all X ∈Mn(C).



Corollary. In the conditions of Theorem

1. the map T is automatically surjective and R-linear.

2. assumptions (a) and (b) are equivalent.



Example. Let F = F. Assume T : I1n(F) → I1n(F) is bijec-

tive, T (M) = M , T (X) = X for all X /∈ M . Then T is

strongly monotone with respect to
]
<-order.

M is the set of index 1 matrices with unique Jordan

block.



Example. Let ‖ · ‖ be a norm in Mn(C) and ε > 0 be

such that ε-neighborhood of I in the norm ‖ · ‖ does not

contain singular matrices. Let T : Mn(C)→Mn(C):

T (X) = max{1− ε−1‖X − I‖,0}I.

Then T is non-injective continuous
]
6-monotone and is

not 0-additive, is not R-linear, does not have the form

as in the statement.

Proof. Let X,Y ∈Mn(C), IndX = 1, X
]
6 Y .

If X /∈ ε-neighborhood of I then T (X) = 0
]
6 T (Y ).

Otherwise rkX = n. Hence X = Y and T (X) = T (Y ).

T is not 0-additive: T (E11)+T (I−E11) = 0 6= I = T (I).



The following example convinces us that without conti-

nuity assumption even the assumptions of bijectivity and

strong monotonicity do not guarantee the that T has

good form:

Example. Let T : Mn(F)→Mn(F):

T (A) =
∑
λ∈F

(λS2
A(λ)− S3

A(λ)).

(In the SOD of A via S2 and S3 we changed plus to minus).

Then

(1) T is bijective,

(2) T is strongly
]
6- monotone,

(3) on the whole Mn(F) the map T is not additive, so it

is not of the form described in Theorem.



Operator semigroups

over

infinite dimensional spaces



Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Minus order: A,B ∈ B(H): A ≤
−
B iff ∃ idempotent

operators P,Q ∈ B(H):

(i) ImP = ImA,

(ii) Ker A = Ker Q,

(iii) PA = PB,

(iv) AQ = BQ.



Theorem: [Šemrl]

φ : B(H)→ B(H) is bijective, strongly preserve the minus-

order.

Then there exist operators U, V : H → H such that

φ(A) = αUAV for every A ∈ B(H) or φ(A) = αUA∗V for

every A ∈ B(H)

No additivity or continuity!



Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Drazin star order: A,B ∈ B(H): A∗≤B iff ∃ self-adjoint

idempotent operators P,Q ∈ B(H):

(i) ImP = ImA,

(ii) Ker A = Ker Q,

(iii) PA = PB,

(iv) AQ = BQ.



Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Left-star order: A,B ∈ B(H): A∗≤B iff ∃ self-adjoint

idempotent operator P ∈ B(H) and idempotent operator

Q ∈ B(H):

(i) ImP = ImA,

(ii) Ker A = Ker Q,

(iii) PA = PB,

(iv) AQ = BQ.



Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Left-star order: A,B ∈ B(H): A∗≤B iff ∃ self-adjoint

idempotent operator P ∈ B(H) and idempotent operator

Q ∈ B(H):

(i) ImP = ImA,

(ii) Ker A = Ker Q,

(iii) PA = PB,

(iv) AQ = BQ.

A∗≤B iff A∗A = A∗B and Im(A) ⊆ Im(B)



Theorem: [Dolinar, Guterman, Marovt]

φ : B(H) → B(H) is bijective, additive, strongly mono-

tone w.r.t.

left-star (resp., right-star) order.

Then there exist operators U, V : H → H,

U (resp., V ) is unitary, such that

φ(A) = αUAV for every A ∈ B(H).



Definition. H – complex Hilbert space

B(H) – all bounded linear operators on H

Drazin star order: A,B ∈ B(H): A∗≤B iff ∃ self-adjoint

idempotent operators P,Q ∈ B(H):

(i) ImP = ImA,

(ii) Ker A = Ker Q,

(iii) PA = PB,

(iv) AQ = BQ.

A
∗
6 B iff A∗A = A∗B and AA∗ = BA∗ (as for matrices)



Theorem: H — separable infinite dimensional complex

Hilbert space, K(H) — subspace of compact operators.

Let φ : K(H)→ K(H) is a bijective, additive and contin-

uous map such that ∀ A,B ∈ K(H)

A
∗
6 B if and only if φ(A)

∗
6 φ(B).

⇒∃ 0 6= α ∈ C, U, V : H → H both unitary or both

antiunitary:

φ(A) = αUAV ∀ A ∈ K(H) or

φ(A) = αUA∗V ∀ A ∈ K(H).



Example

Let f : (0,∞)→ (0,∞) be a bijective continuous map on

the set of positive real numbers and let

g : (0,∞)→ {λ ∈ C : |λ| = 1}.

For 0 ∈ K(H) let T (f, g)(0) = 0.

If 0 6= A =
∑
α>0

αVα ∈ K(H) is Penrose decomposition

(Vα is partial isometry ∀ α & VαV ∗β = V ∗αVβ = 0 for α 6= β),

let

T (f, g)(A) =
∑
α>0

f(α)g(α)Vα.

Then T (f, g) is bijective, non-additive and preserves the

star order in both directions.



Definition. Let A,B ∈ B(H). Then A
]
6 B, if A = B or

∃ idempotent P ∈ B(H):

ImA = ImP, KerA = KerP , PA = PB, AP = BP

Lemma: Let A,B ∈ B(H), A
]
6 B. Then A6̄B.



Theorem: Let T : B(H) → B(H) — bijective and ad-

ditive, strictly monotone wrt
]
<. Then ∃ 0 6= α ∈ F,

S : H → H — linear or semi-linear invertible bounded:

T (A) = αSAS−1 ∀ A ∈ B(H) or

T (A) = αSA∗S−1 ∀ A ∈ B(H).



One small note to the proof...

(PAQ)] =

= PA(AA]QPA+ I −AA])−2Q

instead of

(PAQ)∗ = Q∗A∗P ∗


