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HNN Extensions

Let S be an inverse semigroup and let φ : A1 → A2 be an
isomorphism between inverse subsemigroups of S .

If A1 and A2 are not monoids then we adjoin a shared identity
1 to A1, A2 and S . Let ei be the identity of Ai , for i = 1, 2.

Yamamura (1997) showed that the HNN extension
S∗ = [S ;A1,A2;φ] contains a copy of S and an element t,
with tt−1 = e1, t−1t = e2 and t−1at = (a)φ, for all a ∈ A1.
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Methods

Schützenberger automata

connected components of the Cayley graphs

generalization of Munn trees

tool to approach algorithmic and structural problems in
inverse semigroups

deterministic inverse word automata
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Schützenberger automata

Schützenberger automaton A(Y ,T ,w) has many nice properties...
[Stephen, 1994]

one especially useful for the study of the word problem:

wτ = w ′τ

iff

L[A(Y ,T ,w)] = L[A(Y ,T ,w ′)]

.

one especially useful for the study of structure:

Ge
∼= Aut(SΓ(X ,R, e))
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Schützenberger automata

Applying Stephen’s results assumes that we already know the
Schützenberger automata for the given words and inverse
semigroup.

BUT
in general, we do not know any effective procedure for constructing
the Schützenberger automata.
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Stephen’s iterative procedure.

Elementary expansion:
- sewing on a relation r = s
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Elementary determination:
-edge folding
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Schützenberger graphs - iterative procedure

In this way we get a directed system of inverse graphs

Γ1 → Γ2 → . . .→ Γi → . . .

whose directed limit is the Schützenberger graph SΓ(X ,R,w).

In general, this is:

· infinite

· complicated

· not transparent what is the best way to get to the limit

· never ending

·
...

Goal: Introduce some order (which we were able to do for some
classes of inverse semigroups)
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Lower bounded subsemigroups

We say that A1 is lower bounded in S if a ≥ e, where a ∈ A1

and e ∈ E (S), implies a ≥ f ≥ e, for some f ∈ E (A1).

Similarly, A2 is lower bounded in S if a ≥ e, where a ∈ A2

and e ∈ E (S), implies a ≥ f ≥ e, for some f ∈ E (A2).

We now assume that A1 and A2 are lower bounded in S and
show how to construct the Schützenberger automata of S∗.
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Schützenberger Automata of S ∗ FIM(t)

The underlying graph consists of finitely many maximal
connected subgraphs labeled over S or t, called lobes.

Each lobe is a Schützenberger graph of S or FIM(t).

Adjacent lobes share one vertex; adjacency defines a tree.

Black circles are lobes over S , arrows are paths over S ∪ {t}.
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Construction 1

Since S∗ satisfies tt−1 = e1 and t−1t = e2 , we can:

Sew on a loop (green) labeled by e1 at the start of a t-edge.

Sew on a loop (green) labeled by e2 at the end of a t-edge.

Then close, relative to S ∗ FIM(t), using the algorithm of
Jones et al (1994). The number of black circles may reduce.
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Construction 2

Since S∗ satisfies t−1ft = (f )φ, for all f ∈ E (A1), we can:

Sew on a loop (green) labeled by (f )φ at the end of a t-edge,
if f ∈ E (A1) labels a loop at the start of the t-edge.

Sew on a loop (green) labeled by (g)φ−1 at the start of a
t-edge, if g ∈ E (A2) labels a loop at the end of the t-edge.

Then close the resulting automaton, relative to S ∗ FIM(t).
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Direct Limit Of Construction 2

Construction 2 determines a directed system.

In the direct limit, the lobes over S (black circles) are direct
limits of directed systems of Schützenberger graphs of S .
We can assume the direct limit has the following refinements:

The inital vertices of two t-edges are not connected by a path
labeled by any a ∈ A1.
The terminal vertices of two t-edges are not connected by a
path labeled by any b ∈ A2.
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Construction 3

Since S∗ satisfies t−1at = (a)φ, for all a ∈ E (A1), we can:

Sew on a t-edge (green) v ′1 →t v ′2 whenever we have a t-edge
v1 →t v2 and a path v1 →a v ′1, for some a ∈ A1, where v ′2 is
such that we have a path v2 →(a)φ v ′2.

The new t-edge v ′1 →t v ′2 connects the same black circles as
the original t-edge v1 →t v2.
The resulting automaton has the same refinements.
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Construction 4

Since S∗ satisfies t−1ft = (f )φ, for all f ∈ E (A1), we can:

Sew on v1 →t v2 (green) at v1, if there is a loop v1 →e1 v1,
and sew on v2 →(a)φ v2, for all v1 →a v1 where a ∈ A1.

Sew on v ′1 →t v ′2 (green) at v ′2, if there is a loop v ′2 →e2 v ′2,

and sew on v ′1 →(b)φ−1
v ′1, for all v ′2 →b v ′2 where b ∈ A2.

Close, relative to S ∗ FIM(t), and perform Construction 3.
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Direct Limit Of Construction 4

Construction 4 determines a directed system.

Each automaton in the directed system is embedded into
every subsequent automaton.

The direct limit is a Schützenberger automaton of S∗.
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The Host

Every Schützenberger automaton of S∗ has a host (orange),
defined as a minimal finite-lobe subgraph from which the
remaining graph feeds off, by applications of Construction 4.
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The Automorphism Group

The automorphism group is the automorphism group of the
subgraph of all hosts, and is also the fundamental group of a
graph of groups, defined by the orbits of the hosts.

If there is more than one host then every host is a lobe over S .
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Decidable Word Problem For S∗

Results

Suppose A1 and A2 are lower bounded in S.

Then S∗ has
decidable word problem if:

S has decidable word problem.

The direct limit of Construction 2 has decidable language.

An application of Construction 3 has decidable language.

An application of Construction 4 has decidable language

Certain conditions on {a ∈ Ai : a ≥ g} hold, for all g ∈ E (S)
and i = 1, 2.

Corollary

If S is finite and finitely presented and A1, A2 are lower bounded
in S then S∗ has decidable word problem.

20/26



Decidable Word Problem For S∗

Results

Suppose A1 and A2 are lower bounded in S. Then S∗ has
decidable word problem if:

S has decidable word problem.

The direct limit of Construction 2 has decidable language.

An application of Construction 3 has decidable language.

An application of Construction 4 has decidable language

Certain conditions on {a ∈ Ai : a ≥ g} hold, for all g ∈ E (S)
and i = 1, 2.

Corollary

If S is finite and finitely presented and A1, A2 are lower bounded
in S then S∗ has decidable word problem.

20/26



Decidable Word Problem For S∗

Results

Suppose A1 and A2 are lower bounded in S. Then S∗ has
decidable word problem if:

S has decidable word problem.

The direct limit of Construction 2 has decidable language.

An application of Construction 3 has decidable language.

An application of Construction 4 has decidable language

Certain conditions on {a ∈ Ai : a ≥ g} hold, for all g ∈ E (S)
and i = 1, 2.

Corollary

If S is finite and finitely presented and A1, A2 are lower bounded
in S then S∗ has decidable word problem.

20/26



Special Case: Jajcayová (1997)

HNN’s

{a ∈ Ai : a ≥ e} is either empty or has a minimal element,
denoted by fi (e), for all e ∈ E (S) and i ∈ {1, 2}.
There does not exist an infinite sequence {ak},
where ak ∈ E (Ai ) and ak > fi (eak) > ak+1, for all k .

Results

The Schützenberger automata of S∗ can be characterised; the
lobes over S are isomorphic to Schützenberger graphs of S.

The maximal subgroups of S∗ are either isomorphic to
subgroups of S or are the fundamental groups of graphs of
groups, defined by the D-classes of A1, A2 and S.

S∗ is completely semisimple if and only if S is completely
semisimple and ≺ ∩ �A⊆≺A.

If S is free and A1, A2 are finitely generated then S∗ has
decidable word problem.
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The General Case For HNN Extensions

Assuming no conditions on A1 and A2:

Let M(Ai ) be the semilattice of all closed inverse submonoids
of Ai , for i = 1, 2. The product of closed inverse submonoids
is defined as the closed inverse submonoid they generate.

Let 〈a〉 denote the closed inverse submonoid of Ai generated
by a ∈ Ai , for i = 1, 2.

Let µAi
be the least congruence on S ∗E(Ai ) M(Ai ) such that

gµAi
≤ aµAi

if and only if gµAi
≤ 〈a〉µAi

, for all a ∈ Ai and
g ∈ E (S ∗E(Ai ) M(Ai )), for i = 1, 2.

Put Ti = (S ∗E(Ai ) M(Ai ))/µAi
, for i = 1, 2.

Define Zi = (Ai ∗E(Ai ) M(Ai ))/µAi
, for i = 1, 2, similarly.

We have an isomorphism π : Z1 → Z2 and S is embedded
into T1 and T2. Put T = T1 ∗S T2.
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Constructing A New HNN Extension

Results

If S∗ = [S ;A1,A2;φ] is any HNN extension then:

Z1 and Z2 are embedded into T .

Z1 and Z2 are lower bounded in T .

S∗ is embedded into T ∗ = [T ;Z1,Z2;π].
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Special Case: When S Is Finite

Results

T ∗ has decidable word problem.

A maximal subgroup of T ∗ is isomorphic to the fundamental
group of a graph of groups, defined by the D-classes of T , Z1

and Z2, or is a subgroup of T .

T ∗ is completely semisimple if and only if T is completely
semisimple and ≺ ∩ �Z⊆≺Z .
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Special Case: When S Is Finite

Corollaries

(Cherubini and Rodaro 2008) S∗ has decidable word problem.

(Ayyash 2014) A maximal subgroup of S∗ is isomorphc to the
fundamental group of a graph of groups, defined by the
D-classes of S, A1 and A2, or is a homomorphic image of a
subgroup of S.

(Ayyash 2014) S∗ is completely semisimple if and only if S is
completely semisimple and ≺ ∩ �A⊆≺A.

25/26



Thank you!
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