On a Conjecture in Artin groups

Arye Juhász

Department of Mathematics Technion, Israel Institute of Technology Haifa, 32000, ISRAEL

Conference Cremona, June 10, 2019

Introduction

Let $m, n \in \mathbb{N}$ (\mathbb{N} - the natural numbers), $m \ge 0$, $n \ge 1$ and let Γ be a simple graph without loops, with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set $E = \{e_1, \ldots, e_m\}$. Label the edges by natural numbers via a labelling function $\lambda : E \to \mathbb{N}$. Denote $\lambda(e) = n_{ii}$, where e connects v_i to v_i , $i \neq j$ ($n_{ii} = n_{ii}$). For every such labelled graph correspond a group presentation $\mathcal{P}(\Gamma) = \langle x_1, \dots, x_n \mid R_e \ , \ e \in E \rangle$ such that $R_e = (x_i x_j)^{\frac{1}{2}n_{ij}} (x_i^{-1} x_j^{-1})^{\frac{1}{2}n_{ij}}$ for n_{ij} even and $R_e = (x_i x_j)^{\frac{n_{ij}-1}{2}} x_i \cdot (x_i^{-1} x_i^{-1})^{\frac{n_{ij}-1}{2}} x_i^{-1}$ for n_{ij} odd. The group defined by $\mathcal{P}(\Gamma)$ is denoted by $A(\Gamma)$. It is the Artin group defined by Γ . We say that $A(\Gamma)$ is *irreducible* if $A(\Gamma)$ is not the direct sum of two Artin subgroups $A_1 = \langle X_1 \rangle$ and $A_2 = \langle X_2 \rangle$ with $X = X_1 \cup X_2, X_1 \cap X_2 = \emptyset.$

2 / 20

Examples

- 1. $n_{ij} = 0$ for every $i, j, 1 \le i < j \le n$. Then A is the free group on X.
- 2. $n_{ij} = 2$ for every $i, j, 1 \le i < j \le n$. Then A is the free abelian group on X.
- 3. $n_{ij} \in \{0, 2\}$ for every $i, j, 1 \le i < j \le n$. Then A is called right angled.

・ロト ・四ト ・ヨト ・ヨト 三田

To each Artin group A there corresponds a Coxeter group W_A , obtained by adding the relators x_i^2 , i = 1, ..., n. An Artin group is called *spherical* if W_A is a finite group. The graphs of the spherical Artin groups are classically known.

Example $X = \{x_1, x_2, x_3\}$ Then $A(\Gamma)$ is of finite type (or spherical) if and only if Γ is a triangle with vertices x_1 , x_2 and x_3 such that $\frac{1}{n(x_1, x_2)} + \frac{1}{n(x_2, x_3)} + \frac{1}{n(x_3, x_1)} > 1$

Let A be an irreducible Artin group. If A is not of finite type then the center of A is $\{1\}$.

This conjecture is known to be true for right angled Artin groups and Artin groups with cohomological dimension ≤ 2 .

In the present talk we confirm this conjecture for Artin groups under an assumption which is stronger than not being spherical.

Definition Let A be an Artin group, $A = A(\Gamma)$. Call A pointwise-spherical if every vertex v of Γ is contained in a spherical triangle, i.e. there are distinct vertices u, w in Γ such that $\frac{1}{n_{u,v}} + \frac{1}{n_{v,w}} + \frac{1}{n_{w,u}} > 1$

Say that A is not pointwise-spherical if Γ contains a vertex which is not contained in any spherical triangle.

If A is 2-dimensional then clearly A is not pointwise-spherical. However, if A is not pointwise-spherical it may have any cohomological dimension. Our main theorem is the following:

Theorem A Let A be a not pointwise-spherical irreducible Artin group.

7 / 20

Then Z(A) = 1*.*

Notation and preliminary notions

Notation

We denote by |W| the length of a word $W \in F(x_1, \ldots, x_n)$ and by ||W|| its syllable length (also called free-product length). Thus $|x_1^2x_3^{-3}x_5| = 2 + 3 + 1 = 6$ and $||x_1^2x_3^{-3}x_5|| = 3$. We denote by Supp(W) the letters of X which occur in W or W^{-1} .

Every group G has a free presentation $\mathcal{P} = \langle X | \mathcal{R} \rangle$ by a set of generators X and a set of cyclically reduced defining relators $\mathcal{R} \subseteq F(X)$, where F(X) is the free group, freely generated by X and $G \cong F(X)/N$, where N is the normal closure of \mathcal{R} in F(X) and \mathcal{R} cyclically closed.

イロン 不通 とうほう 不通 とうほ

In certain cases it is convenient to ignore a part of the defining relators and to emphasize the others. This can be done when we can divide X and \mathcal{R} into subsets $X = X_1 \dot{\cup} X_2$ and $\mathcal{R} = \mathcal{R}_1 \dot{\cup} \mathcal{R}_2$ such that $\mathcal{R}_1 \subseteq F(X_1)$ and $\mathcal{R}_2 \not\subseteq F(X_1)$. Then we ignore \mathcal{R}_1 and emphasize \mathcal{R}_2 by considering the quotient of $H * F(X_2)$ by the normal closure of \mathcal{R}_2 in $H * F(X_2)$, where $H = F(X_1)/N_1$ and N_1 is the normal closure of \mathcal{R}_1 in $F(X_1)$. This gives a *presentation of G relative to H*. More precisely,

Definition A relative presentation \mathbb{P} consists of a group H, a set $Y, Y \cap H = \emptyset$ and a set \mathcal{R}' of cyclically reduced words in H * F(Y) which are not in H. We denote

$$\mathbb{P} = \langle H, Y | \mathcal{R}' \rangle \tag{1'}$$

11 / 20

The group defined by \mathbb{P} is $H * F(Y) / \langle \langle \mathcal{R}' \rangle \rangle$, where $\langle \langle \mathcal{R}' \rangle \rangle$ is the normal closure of \mathcal{R}' in H * F(Y).

Definition

 $\mathbb P$ is called aspherical if there are no nontrivial identities among the relations.

Example 3

$$X = \{a, b, c\}, R = \{R_1, R_2, R_3\}, \text{ where } R_1 = aba^{-1}b^{-1}, R_2 = aca^{-1}c^{-1}, R_3 = bcb^{-1}c^{-1}. \text{ Here } G \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}.$$

13/20

We have the following identity relations $R_1 R_2^b R_3 (R_1^{-1})^c R_2^{-1} (R_3^{-1})^a$, where $R^x = x R x^{-1}$

3.1 Klyachko's Words and asphericity of \mathbbm{L}

In this Section we are going to apply the following result of A.A. Klyachko, concerning the center of relative presentations by which we show that in most of the case Z(A) = 1. (Proposition 3.2). We also consider the remaining cases, where Klyachko's result cannot be applied (Proposition 3.3).

Klyachko's Lemma

Let $\mathbb{P} = \langle H, X_1 | \mathcal{R} \rangle$ be a relative presentation, $H \neq 1, X_1 \neq \emptyset$. Suppose that there exists a word $W \in H * F(X_1)$ such that W is not a proper power in $H * F(X_1)$ (*) and there exists a positive integer I such that W^{I} is not conjugate in $H * F(X_1)$ to any element of $H \cup \mathcal{R} \cup \mathcal{R}^{-1}$ (**) where $\mathcal{R}^{-1} = \{R^{-1} | R \in \mathcal{R}\}$

Let \mathbb{L} be the relative presentation obtained from \mathbb{P} by adding W as a relator (2)

If \mathbb{L} is aspherical, then

Z(G) = 1, where G is the group presented by \mathbb{P}

3.3 Proof of the Main Result

We start the proof with a subdivision of X_0 according to the relations between its elements and elements of X_1 . Thus for an element $s \in X_1$ define

$$C_s = \{x \in X_0 | n(x, s) = 2\},\ K_s = \{x \in X_0 | n(x, s) = 0\} \text{ and}$$

 $T_s = \{x \in X_0 | w(x, s) \ge 3\}$ Then

$$X_0 = C_s \cup T_s \cup K_s \tag{2}$$

16

Propositon 3.2 If $X_0 \neq K_s \cup C_s$ then there exists a K-word for \mathbb{P} . The proof is by constructing a long word which satisfies conditions (*) and (**) and application of combinatorial curvature calculations.

$$K(v) = 2 - d(v) + 2\left(\sum \frac{1}{d(D_i)}\right)$$

Proposition 3.3

Suppose $X_0 = C_s \cup K_s$. Then one of the following holds,

- 1. A has a K-word (hence Z(A) = 1)
- 2. $C_{s_i} = \langle c \rangle$ for every $s_i \in X_1$ and $Z(A) = Z_{\Gamma}(A) = \langle c \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

17 / 20

3. Z(A) = 1.

Proof of Proposition 3.3

Suppose 1 does not hold. Then \mathbb{L} is not aspherical.

<u>Case 1</u> $X_1 = \{s\}$

We have $A = \langle s, K_s, C_s \rangle$. Taking into account the fact that C_s is free, it follows by standard group theory and general results on Artin groups that

$$A = P_1 *_Q P_2 * \dots * P_k \quad , \quad Q = \langle s, K_s \rangle \rangle \quad , \quad P_i = \langle Q, c_i \rangle \quad (3)$$
$$C_s = \{c_1, \dots, c_k\}$$

Hence, if $k \ge 2$, then $Z(A) \subseteq Z(Q) = Z(\langle s, K_s \rangle) = Z(\langle s \rangle * K_s) = 1.$ If k = 1 then $A = \langle s, c_1, K_s \rangle$. It follows from the assumption that \mathbb{L} is not aspherical that for every $a \in K_s$.

$$a^i c_1^{\alpha} a^j c_1^{\beta} = 1,$$

By general results in Artin groups this implies that $[a, c_1] = 1$, for any $a \in K_s$.

19/20

Hence c_1 commutes with K_s and certainly with s. Therefore $A = \langle s, K_s \rangle \oplus \langle c_1 \rangle = (\langle s \rangle * K_s) \oplus \langle c_1 \rangle$, hence $Z(A) = Z(\langle s \rangle * K_s) \oplus Z(\langle c_1 \rangle) = \langle c_1 \rangle$.

<u>Case 2</u> $|X_1| \ge 2$

Then similar arguments (in a different order) show that either Z(A) = 1 or $Z(A) = Z_{\Gamma}(A) = \langle c \rangle$, for some $c \in X_0$.

Proof of the Main Result

By Klyachko's Lemma (Lemma 3.1) if \mathbb{P} has a K-word then Z(A) = 1. By Propositions 3.2 and 3.3 either \mathbb{P} has a K-word or $Z(A) = Z_{\Gamma}(A) = \langle c \rangle$, for some $c \in X_0$. Hence if $Z(A) \neq 1$ then $Z(A) = Z_{\Gamma}(A) = \langle c \rangle$.