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Tropical???

Definition

T = R ∪ {−∞}

Binary operations: x ⊕ y = max(x , y) and x ⊗ y = x + y (= “xy”).

Properties

T is an idempotent semifield:

(T,⊕) is a commutative monoid with identity −∞;

−∞ is a zero element for ⊗;

(T \ {−∞},⊗) is an abelian group with identity 0;

⊗ distributes over ⊕;

x ⊕ x = x

In fact x ⊕ y is either x or y .
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Definition

Tropical algebra or max-plus algebra is linear algebra where the base
field is replaced by the tropical semiring.

Definition

Tropical geometry is (roughly!) algebraic geometry where the base field
is replaced by the tropical semiring.
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Applications

Tropical methods have applications in . . .

Combinatorial Optimisation

Discrete Event Systems

Control Theory

Formal Languages and Automata

Phylogenetics

Statistical Inference

Geometric Group Theory

(Mostly Enumerative) Algebraic Geometry

Semigroup Theory

(carrier for representations)
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Tropical Matrix Semigroups

Definition

Mn(T) is the semigroup of n× n matrices over T, under the natural matrix
multiplication induced by ⊕ and ⊗.

Definition

UTn(T) is the subsemigroup of upper triangular matrices.

Studied implicitly for 50+ years with many interesting specific results
(e.g. Gaubert, Cohen-Gaubert-Quadrat, d’Alessandro-Pasku).

Since about 2008, systematic structural study using the tools of
semigroup theory
(Hollings, Izhakian, Johnson, Kambites, Taylor, Wilding).

Philosophy

The algebra of Mn(T) mirrors the geometry of tropical convex sets.
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Semigroup Identities

A semigroup identity is a pair of non-empty words, usually written u = v
over some alphabet Σ.

A semigroup S satisfies the identity u = v if every morphism from the
free semigroup Σ+ to S sends u and v to the same place.

(In other words, if u and v evaluate to the same element for every
substitution of elements in S for the letters in Σ.)

For example, a semigroup satisfies . . .

. . .AB = BA if and only if it is commutative;

. . .A2 = A if and only if it is idempotent;

. . .AB = A if and only if it is a left-zero semigroup.
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Identities for tropical matrices

Theorem (Izhakian & Margolis 2010)

UT2(T) and consequently M2(T) satisfy (non-trivial) semigroup identities.

Theorem (Izhakian 2013–16, Okniński 2015, Taylor 2016)

UTn(T) satisfies a semigroup identity for every n.

Theorem (Daviaud, Johnson & K. 2018)

UT2(T) satisfies exactly the same identities as the bicyclic monoid.

For each n there is an efficient algorithm to check whether a given
identity is satisfied in UTn(T).

Theorem (Izhakian & Merlet 2018, building on ideas of Shitov)

Mn(T) satisfies a semigroup identity for every n.
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Question

Is there a natural concrete realisation of the free objects in the variety
generated by UTn(T)?

(In particular, in the bicyclic variety?)

Theorem (K. 2019)

Yes: they live inside quiver algebras over the semiring of tropical
polynomials.

Theorem (K. 2019)

Can represent each free object in the bicyclic variety inside a semidirect
product of a commutative monoid acting on semilattice.

The former result generalises to arbitrary commutative semirings
(including fields?!?).

See arXiv:1904.06094 for more details.
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The former result generalises to arbitrary commutative semirings
(including fields?!?).

See arXiv:1904.06094 for more details.
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Plactic Monoids
The plactic monoid Pn of rank n is the monoid generated by
{1, 2, . . . , n} (= [n]) subject to the Knuth relations:

bca = bac (a < b ≤ c) acb = cab (a ≤ b < c)

Elements are in bijective correspondence (via row reading or column
reading) with semistandard Young tableaux over [n]:

4 4

2 3 4

1 2 3 3

= 442341233 = 421432433 = · · ·

4

2 3 4 4

1 2 3 3

= 423441233 = 421324343 = · · ·

(Entries in each column strictly decreasing, entries in each row weakly
increasing, row lengths weakly increasing.)
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Plactic monoids . . .

. . . were (probably) discovered by Knuth (1970).

. . . were named (“plaxique”) and extensively studied by Lascoux and
Schützenberger (1981).

. . . (and their algebras) have many applications in algebraic
combinatorics and representation theory.

. . . are J -trivial.

. . . have polynomial growth of degree n(n+1)
2 .

. . . admit finite complete rewriting systems and biautomatic structures
(Cain, Gray & Malheiro 2015).

Schensted’s algorithm (1961) constructs tableaux from words.
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Identities for plactic monoids

Question

Does Pn satisfy a semigroup identity?

“Yes” when n ≤ 3 (Kubat & Okniński 2013)

Corresponding answer is “yes” for Chinese monoids (consequence of
Jaszuńska and Okniński 2011)

Conjectured “yes” for all finite n (Kubat & Okniński 2013)

“No” when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)

Corresponding answer is “yes” for right patience sorting (= Bell)
monoids and “no” for left patience sorting monoids (Cain, Malheiro &
F. M. Silva 2018)

Corresponding answer is “yes” for hypoplactic, sylvester, Baxter,
stalactic and taiga monoids (Cain & Malheiro 2018)

Again conjectured “yes” for all finite n (Cain & Malheiro 2018)

Recent preprint of Okniński on n ≥ 4 withdrawn.
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Corresponding answer is “yes” for Chinese monoids (consequence of
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Conjectured “yes” for all finite n (Kubat & Okniński 2013)

“No” when n infinite (Cain, Klein, Kubat, Malheiro & Okniński 2017)
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Theorem (Izhakian 2017)

The plactic monoid P3 has a faithful representation in UT3(T)× UT3(T).

Question (Izhakian 2017)

Does each Pn have a faithful representation by tropical matrices?

Remark

If “yes” then Pn satisfies a semigroup identity.

Cain, Klein, Kubat, Malheiro & Okniński 2017

Alternative faithful representation for P3.

Both the above representations generalise naturally to higher rank but do
not remain faithful. e.g. in P4 they do not separate:

4 4

2 3 4

1 2 3 3

and

4

2 3 4 4

1 2 3 3
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Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n

but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3,

n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5,

n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Theorem (Johnson & K. 2019)

For every finite n, Pn has a faithful representation in some UTk(T).

Corollary

Every finite rank plactic monoid satisfies a semigroup identity.

In general k is of order 2n but . . .

Theorem (Johnson & K. 2019, using Daviaud, Johnson & K. 2018)

Pn satisfies all identities satisfied by UTd(T) where d = bn24 + 1c

(n = 3 =⇒ d = 3, n = 4 =⇒ d = 5, n = 5 =⇒ d = 7)

Johnson & Kambites Tropical Representations of Plactic Monoids 13 / 18



Construction of the Representation
For Pn we will build 2[n] × 2[n] matrices.

Think of subsets as possible columns of semistandard Young tableaux.
Define S ≤ T if |S | = |T | and column S can appear left of column T .
For example, with n = 4:

3

2

1

≤
4

2

1

≤
4

3

1

≤
4

3

2

2

1
≤

3

1
≤

4

1
,

3

2
≤

4

2
≤

4

3

1 ≤ 2 ≤ 3 ≤ 4

Remark

“d” from the previous slide is the longest chain length in this partial order.
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For x ∈ [n] define a 2[n] × 2[n] tropical matrix by

ρ(x)P,Q =


−∞ if P � Q

1 if ∃T ⊆ [n] with P ≤ T ≤ Q and x ∈ T

0 otherwise.

Choose an order of rows and columns such that these matrices are
upper triangular (by extending ≤ to a linear order).

Extend to a morphism ρ : [n]∗ → UT2n(T).

Lemma

The map ρ respects the Knuth relations and therefore induces a morphism

ρn : Pn → UT2n(T).

The Thing You Expect Me To Say

The map ρn : Pn → UT2n(T) is a faithful representation of Pn.
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For i ≤ n let πn→i : Pn → Pi be the map which discards the last n − i
generators.

Then each πn→i is a morphism and the direct sum map . . .

n∏
i=1

ρi ◦ πn→i : Pn →
n∏

i=1

UT2i (T)

. . . gives a faithful representation of Pn in UT2n+1−1(T).
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The Slide There Almost Certainly Won’t Be Time For

Definition

Let ≤ be a partial order on [n].

Let d be the length of the longest chain.

Consider the set of all matrices in Mn(T) such that
i 6≤ j =⇒ Mi ,j = −∞.

This is a subsemigroup of Mn(T), called a chain-structured tropical
matrix semigroup of chain length d .

Theorem (Daviaud, Johnson & K. 2018)

Any chain-structured tropical matrix semigroup of chain length d satisfies
the same identities as UTd(T).
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Further details

M. Johnson & M. Kambites, Tropical representations of plactic
monoids, arXiv:1906.03991

M. Kambites, Free objects in triangular matrix varieties and quiver
algebras over semirings, arXiv:1904.06094

L. Daviaud, M. Johnson & M. Kambites, Identities in upper triangular
tropical matrix semigroups and the bicyclic monoid, J. Algebra
Vol.501 pp.503–525 (2018).
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