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Composition of graphs

Definition
Given G1 = (X, E1), G2 = (Y, E2);

Then G1 ◦ G2 = (X× Y, E), where E is given by:

• if {x1, x2} ∈ E1, then {(x1, y1), (x2, y2)} ∈ E for all y1, y2 ∈ Y;
• if {y1, y2} ∈ E2, then {(x, y1), (x, y2)} ∈ E for all x ∈ X
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Composition of graphs

G1 = (X, E1), G2 = (Y, E2)
G = G1 ◦ G2

Y

X

G1 = (X, E1)

G2

Automorphisms ?

Aut(G) ⊇ Aut(G1) ≀ Aut(G2)
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Unnatural isomorphisms?

Aut(G1 ◦ G2) ⊇ Aut(G1) ≀ Aut(G2)

Problem (F. Harary)
When does the equality holds? When has G1 ◦ G2 no other,
“unnatural” isomorphisms?

Solution: Sabidussi, Hemminger (Duke Math. J. 1961, 1966)

Dobson, Morris (for colored (di)graphs, 2009) – for finite:
Aut(G1 ◦ G2) = Aut(G1) ≀ Aut(G2) iff for every color k, the
following implication holds:

if G2 has a pair of k-twins (two vertices joined by an edge of
color k that have exactly the same neighbors in every color),
then the k-complement of G1 is connected.
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Converse problem

(Grech, Jeż, AK, 2008): Even if the condition above is not
satisfied one can construct a graph G such that
Aut(G) = Aut(G1) ≀ Aut(G2).

▶ We consider the converse

PROBLEM
If Aut(G) = A ≀ B, does it mean that A = Aur(G1),B = Aut(G2 for
some graphs G1,G2, and G = G1 ◦ G2?

▶ If G is vertex transitive, then YES.

Aut↔ G∗ – orbital graph (colored),
Galois connection Perm↔ ColGr
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Wreath product

GR – automorphism groups of colored graphs

DGR – automorphism groups of colored digraphs

Theorem
Let A and B be permutation groups. Then, A ≀ B ∈ GR iff
B ∈ GR ∪ {I2} and one of the following holds:

1. A ∈ GR ∪ {I2}, or
2. A ∈ DGR \ (GR ∪ {I2}) and B is intransitive.

Theorem
Let A and B be permutation groups. Then A ≀ B ∈ DGR iff
both A,B ∈ DGR.
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Graph G = G∗(A ≀ B)

G∗(B)

G∗(A)

Figure 1: Construction of the orbital graph G = G∗(A ≀ B)
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Product action of the wreath product

(β, (αx)x∈X), where β ∈ Sym(X) and αx ∈ Sym(Y)

the imprimitive action permutations γ ∈ Sym(X× Y) given by:

(v,w)γ = (vαw,wβ) (1)

for every (v,w) ∈ V×W.

the product action permutations ϕ ∈ Sym(YX) given by:

(fϕ)(x) = (f(xβ))αx, (2)

for any f ∈ YX and any x ∈ X.
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Product action of the wreath product

Y

X

f

g

if |X| = n finite, then YX – n-tuples ⟨y1, y2, . . . , yn⟩ permuted by
(α1, . . . , αn) and β ∈ Sn
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Product action of the wreath product

orbital graph G∗(A ≀≀B) – structure ???

Lemma – on Galois closure AutG∗(..)
For any permutation groups A,B, A ≀≀B ⊆ A ≀≀B.

Theorem (Grech, Jeż, AK) 2008
If A,B ∈ GR, then A ≀≀B ∈ GR.

▶ does not hold for DGR

Proposition (for B = Sym(Y))
The product A ≀≀Sym(Y) ∈ GR if and only if A ∈ BGR.

BGR – orbit-closed permutation groups (action on subsets)
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Product action of the wreath product: A ∈ BGR

Theorem
If a permutation group A ∈ BGR, then for any permutation
group B, the product A ≀≀B ∈ GR iff B ∈ DGR and one of the
following holds:

• B has not transposable orbitals, or
• B ∈ GR ∪ {I2}.

Theorem
If a permutation group A ∈ BGR, then for any permutation
group A, the product A ≀≀B ∈ DGR iff A ∈ DGR.
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Product action of the wreath product: A /∈ BGR

DGR+ – permutation groups in DGR having no transposable
orbitals or belonging to GR ∪ {I2}.

rank(B) – the number of orbitals of B.

Theorem

Let (A, X) and (B, Y) be permutation groups. If (A, X) /∈ BGR,
then the following hold:

1. If B /∈ DGR+, then A ≀≀B /∈ GR;
2. If B ∈ DGR+, and either rank(B) ≥ |X|+ 1 or rank(B) = |X|
and all orbitals of B are self-paired, then A ≀≀B ∈ GR.
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Main open Problem

▶ BGR may be partitioned into small classes

The symmetry group of a Boolean function f : {0, 1}n → {0, 1}
set of all permutations σ such that

f(x1σ, x2σ, . . . , xxσ) = f(x1, x2, . . . , xn)

for all x1, x2, . . . , xn ∈ {0, 1}.

BGR(2) – class of the symmetry groups of Boolean functions

BGR(k) – class of the symmetry groups of k-valued Boolean
functions

▶ BGR=
∪
BGR(k)
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Main open Problem

▶ Clote, Kranakis 1991: BGR = BGR(2)

FALSE!

▶ AK 1998: K4 ∈ BGR(3) \ BGR(2)

Other counterexamples ?, BGR(k) ?

▶ Siemons, Volta 2012: infinite number of counterexamples
based on the wreath product

FALSE!

▶ Still: no other member of is known.

PROBLEM
Is BGR(k) a real hierarchy (unknown permutation groups), or
there are only a few exceptions in BGR \ BGR(2)?
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