The wreath product in the automorphism groups of graphs

Andrzej Kisielewicz SandGAL 2019, Cremona, June 10-13

Department of Mathematics and Computer Science University of Wrocław

Definition

Given $G_1 = (X, E_1), G_2 = (Y, E_2);$

Then $G_1 \circ G_2 = (X \times Y, E)$, where E is given by:

- if $\{x_1, x_2\} \in E_1$, then $\{(x_1, y_1), (x_2, y_2)\} \in E$ for all $y_1, y_2 \in Y$;
- if $\{y_1, y_2\} \in E_2$, then $\{(x, y_1), (x, y_2)\} \in E$ for all $x \in X$

Х

$$G_1 = (X, E_1), G_2 = (Y, E_2)$$

 $G=G_1\circ G_2$

 $G_1 = (X, E_1)$

$$G_1 = (X, E_1), \ G_2 = (Y, E_2)$$

 $G=G_1\circ G_2$

$$G_1 = (X, E_1), \ G_2 = (Y, E_2)$$

 $G=G_1\circ G_2$

 $G_1 = (X, E_1)$

$$G_{1} = (X, E_{1}), G_{2} = (Y, E_{2})$$

$$G = G_{1} \circ G_{2}$$
Automorphisms?
$$G_{2}$$

 $G_1 = (X, E_1)$

$$G_{1} = (X, E_{1}), G_{2} = (Y, E_{2})$$

$$G = G_{1} \circ G_{2}$$
Automorphisms ?
$$G_{2}$$

$$G_{2}$$

$$G_{2}$$

$$G_{2}$$

$$G_{2}$$

$$G_{2}$$

$$X$$

 $G_1 = (X, E_1)$

 $Aut(G) \supseteq Aut(G_1) \wr Aut(G_2)$

$Aut(G1 \circ G_2) \supseteq Aut(G_1) \wr Aut(G_2)$

Problem (F. Harary)

When does the equality holds? When has $G1 \circ G_2$ no other, "unnatural" isomorphisms?

Solution: Sabidussi, Hemminger (Duke Math. J. 1961, 1966)

Dobson, Morris (for colored (di)graphs, 2009) – for finite: $Aut(G_1 \circ G_2) = Aut(G_1) \wr Aut(G_2)$ iff for every color *k*, the following implication holds:

if G_2 has a pair of *k*-twins (two vertices joined by an edge of color *k* that have exactly the same neighbors in every color), then the *k*-complement of G_1 is connected.

(Grech, Jeż, AK, 2008): Even if the condition above is not satisfied one can construct a graph G such that $Aut(G) = Aut(G_1) \wr Aut(G_2).$

▶ We consider the converse

(Grech, Jeż, AK, 2008): Even if the condition above is not satisfied one can construct a graph G such that $Aut(G) = Aut(G_1) \wr Aut(G_2).$

▶ We consider the converse

PROBLEM

If $Aut(G) = A \wr B$, does it mean that $A = Aur(G_1)$, $B = Aut(G_2$ for some graphs G_1, G_2 , and $G = G_1 \circ G_2$?

(Grech, Jeż, AK, 2008): Even if the condition above is not satisfied one can construct a graph G such that $Aut(G) = Aut(G_1) \wr Aut(G_2).$

▶ We consider the converse

PROBLEM

If $Aut(G) = A \wr B$, does it mean that $A = Aur(G_1)$, $B = Aut(G_2$ for some graphs G_1, G_2 , and $G = G_1 \circ G_2$?

▶ If G is vertex transitive, then YES.

(Grech, Jeż, AK, 2008): Even if the condition above is not satisfied one can construct a graph G such that $Aut(G) = Aut(G_1) \wr Aut(G_2).$

▶ We consider the converse

PROBLEM

If $Aut(G) = A \wr B$, does it mean that $A = Aur(G_1)$, $B = Aut(G_2$ for some graphs G_1, G_2 , and $G = G_1 \circ G_2$?

▶ If G is vertex transitive, then YES.

Aut \leftrightarrow G^{*} – orbital graph (colored), Galois connection Perm \leftrightarrow ColGr

Wreath product

GR – automorphism groups of colored graphs

DGR – automorphism groups of colored digraphs

Theorem

Let A and B be permutation groups. Then, $A \wr B \in GR$ iff $B \in GR \cup \{I_2\}$ and one of the following holds:

```
1. A ∈ GR ∪ {I_2}, or
```

2. $A \in DGR \setminus (GR \cup \{I_2\})$ and B is intransitive.

Wreath product

GR – automorphism groups of colored graphs

DGR – automorphism groups of colored digraphs

Theorem

Let A and B be permutation groups. Then, $A \wr B \in GR$ iff $B \in GR \cup \{I_2\}$ and one of the following holds:

1. $A ∈ GR ∪ \{I_2\}$, or

2. $A \in DGR \setminus (GR \cup \{I_2\})$ and B is intransitive.

Theorem

Let A and B be permutation groups. Then $A \wr B \in DGR$ iff both $A, B \in DGR$.

Graph $G = G^*(A \wr B)$

Figure 1: Construction of the orbital graph $G = G^*(A \wr B)$

$$(\beta, (\alpha_X)_{X \in X})$$
, where $\beta \in Sym(X)$ and $\alpha_X \in Sym(Y)$

the **imprimitive action** permutations $\gamma \in Sym(X \times Y)$ given by:

$$(\mathbf{v},\mathbf{w})\gamma = (\mathbf{v}\alpha_{\mathbf{w}},\mathbf{w}\beta) \tag{1}$$

for every $(v, w) \in V \times W$.

$$(\beta, (\alpha_X)_{X \in X})$$
, where $\beta \in Sym(X)$ and $\alpha_X \in Sym(Y)$

the **imprimitive action** permutations $\gamma \in Sym(X \times Y)$ given by:

$$(\mathbf{v},\mathbf{w})\gamma = (\mathbf{v}\alpha_{\mathbf{w}},\mathbf{w}\beta) \tag{1}$$

for every $(v, w) \in V \times W$.

the **product action** permutations $\phi \in Sym(Y^{\chi})$ given by:

$$(f\phi)(x) = (f(x\beta))\alpha_x, \tag{2}$$

for any $f \in Y^X$ and any $x \in X$.

Χ

if |X| = n finite, then $Y^X - n$ -tuples $\langle y_1, y_2, \dots, y_n \rangle$ permuted by $(\alpha_1, \dots, \alpha_n)$ and $\beta \in S_n$

orbital graph G*(A ≥ B) – structure ???

orbital graph G*(A ≥ B) – structure ???

Lemma – on Galois closure $AutG^*(..)$ For any permutation groups $A, B, \overline{A \wr B} \subseteq \overline{A} \wr \overline{B}$.

10

orbital graph G*(A ≥ B) – structure ???

Lemma – on Galois closure $AutG^*(..)$ For any permutation groups $A, B, \overline{A \wr B} \subseteq \overline{A} \wr \overline{B}$.

Theorem (Grech, Jeż, AK) 2008 If $A, B \in GR$, then $A \wr B \in GR$.

orbital graph G*(A ≥ B) – structure ???

Lemma – on Galois closure $AutG^*(..)$ For any permutation groups $A, B, \overline{A \otimes B} \subseteq \overline{A} \otimes \overline{B}$.

Theorem (Grech, Jeż, AK) 2008 If $A, B \in GR$, then $A \wr B \in GR$.

does not hold for DGR

orbital graph G*(A ≥ B) – structure ???

Lemma – on Galois closure AutG*(..)

For any permutation groups $A, B, \overline{A \otimes B} \subseteq \overline{A} \otimes \overline{B}$.

Theorem (Grech, Jeż, AK) 2008 If $A, B \in GR$, then $A \wr B \in GR$.

does not hold for DGR

Proposition (for B = Sym(Y)) The product $A \otimes Sym(Y) \in GR$ if and only if $A \in BGR$.

BGR – orbit-closed permutation groups (action on subsets)

Theorem

If a permutation group $A \in BGR$, then for any permutation group B, the product $A \ge B \in GR$ iff $B \in DGR$ and one of the following holds:

- B has not transposable orbitals, or
- $B \in GR \cup \{I_2\}.$

Theorem

If a permutation group $A \in BGR$, then for any permutation group B, the product $A \ge B \in GR$ iff $B \in DGR$ and one of the following holds:

- B has not transposable orbitals, or
- $B \in GR \cup \{I_2\}.$

Theorem

If a permutation group $A \in BGR$, then for any permutation group B, the product $A \ge B \in GR$ iff $B \in DGR$ and one of the following holds:

- B has not transposable orbitals, or
- $B \in GR \cup \{I_2\}.$

Theorem

If a permutation group $A \in BGR$, then for any permutation group A, the product $A \ge B \in DGR$ iff $A \in DGR$.

DGR⁺ − permutation groups in *DGR* having no transposable orbitals or belonging to $GR \cup \{I_2\}$.

DGR⁺ − permutation groups in *DGR* having no transposable orbitals or belonging to $GR \cup \{I_2\}$.

rank(B) - the number of orbitals of B.

DGR⁺ − permutation groups in *DGR* having no transposable orbitals or belonging to $GR \cup \{I_2\}$.

rank(B) - the number of orbitals of B.

Theorem

Let (A, X) and (B, Y) be permutation groups. If (A, X) \notin BGR, then the following hold:

1. If $B \notin DGR^+$, then $A \otimes B \notin GR$;

2. If $B \in DGR^+$, and either rank $(B) \ge |X| + 1$ or rank(B) = |X|and all orbitals of B are self-paired, then $A \otimes B \in GR$.

DGR⁺ − permutation groups in *DGR* having no transposable orbitals or belonging to $GR \cup \{I_2\}$.

rank(B) - the number of orbitals of B.

Theorem

Let (A, X) and (B, Y) be permutation groups. If (A, X) \notin BGR, then the following hold:

1. If $B \notin DGR^+$, then $A \otimes B \notin GR$;

2. If $B \in DGR^+$, and either rank $(B) \ge |X| + 1$ or rank(B) = |X|and all orbitals of B are self-paired, then $A \otimes B \in GR$.

DGR⁺ − permutation groups in *DGR* having no transposable orbitals or belonging to $GR \cup \{I_2\}$.

rank(B) - the number of orbitals of B.

Theorem

Let (A, X) and (B, Y) be permutation groups. If (A, X) \notin BGR, then the following hold:

1. If $B \notin DGR^+$, then $A \otimes B \notin GR$;

2. If $B \in DGR^+$, and either rank $(B) \ge |X| + 1$ or rank(B) = |X|and all orbitals of B are self-paired, then $A \otimes B \in GR$. **BGR** may be partitioned into small classes

The symmetry group of a Boolean function $f: \{0,1\}^n \to \{0,1\}$ set of all permutations σ such that

$$f(x_{1\sigma}, x_{2\sigma}, \ldots, x_{x\sigma}) = f(x_1, x_2, \ldots, x_n)$$

for all $x_1, x_2, \ldots, x_n \in \{0, 1\}$.

BGR(2) – class of the symmetry groups of Boolean functions
 BGR(k) – class of the symmetry groups of k-valued Boolean functions

 $\blacktriangleright BGR = \bigcup BGR(k)$

Main open Problem

Clote, Kranakis 1991: BGR = BGR(2)

Main open Problem

Clote, Kranakis 1991: BGR = BGR(2)

FALSE!

► AK 1998: $K_4 \in BGR(3) \setminus BGR(2)$

Main open Problem

Clote, Kranakis 1991: BGR = BGR(2)
 FALSE!

► AK 1998: $K_4 \in BGR(3) \setminus BGR(2)$

Other counterexamples ?, BGR(k) ?

Clote, Kranakis 1991: BGR = BGR(2)

FALSE!

▶ AK 1998: $K_4 \in BGR(3) \setminus BGR(2)$

Other counterexamples ?, BGR(k) ?

► Siemons, Volta 2012: infinite number of counterexamples based on the wreath product

► Clote, Kranakis 1991: BGR = BGR(2)

FALSE!

▶ AK 1998: $K_4 \in BGR(3) \setminus BGR(2)$

Other counterexamples ?, BGR(k) ?

► Siemons, Volta 2012: infinite number of counterexamples based on the wreath product

FALSE!

▶ Still: no other member of is known.

Clote, Kranakis 1991: BGR = BGR(2)

FALSE!

▶ AK 1998: $K_4 \in BGR(3) \setminus BGR(2)$

Other counterexamples ?, BGR(k) ?

► Siemons, Volta 2012: infinite number of counterexamples based on the wreath product

FALSE!

▶ Still: no other member of is known.

PROBLEM

Is BGR(k) a real hierarchy (unknown permutation groups), or there are only a few exceptions in $BGR \setminus BGR(2)$?