Profinite congruences

Ondřej Klíma (joint work with Jorge Almeida)

Department of Mathematics and Statistics Masaryk University, Brno Czech Republic

Cremona, SandGAL 2019

Completeness theorem for equational logic

- Jorge Almeida's talk in Lisbon 2018 was based on the paper *Towards a pseudoequational proof theory* (Portugal. Math., 75 (2), 2018).
- The basic aim was a proof scheme for pseudoidentities.
- Motivation: the completeness theorem for equational logic states that, for a given signature Λ and a set of identities Σ, every identity valid in the variety [Σ] admits a proof from Σ.
- Notice that
 - proofs are finite;
 - consequences in proofs are given by substitutions in any contexts (first of all) and (then) transitivity;
 - the set of all identities valid in [Σ] is the fully invariant congruence generated by Σ on the free algebra *T*_Λ(*X*) over a countable set of variables *X*.

Pseudoequational proof theory Completeness conjecture Results from the 2018 paper

Pseudoequational proof theory

For pseudoidentities, the situation is rather different.

- Recall that a pseudoidentity over a given pseudovariety U of finite algebras is a formal equality u = v between two elements u and v of some U-free profinite algebra $\overline{\Omega}_A U$, where A is a finite set.
- We consider a proof scheme where consequences are given by substitutions in any contexts, transitivity and by limits of convergent sequences of proved pseudoidentities.
- Notice that it is again possible to move all substitution steps to the beginning of the proof.

Pseudoequational proof theory Completeness conjecture Results from the 2018 paper

Transfinite proof scheme

- So, for a proof of a particular pseudoidentity, one may stick to the variables which appear in it, so that one ends up working inside Ω_AU for a given fixed finite A. We work with relations on Ω_AU.
- It also allows us to consider an initial step where we take all consequences of Σ by substitutions (in all possible contexts) and then alternate transitive closure and topological closure.
- The proof scheme is no longer finite.
- We use transfinite induction, with closure steps for successor ordinals and union for limit ordinals. In this way, we construct equivalence relations Σ_α on Ω_AU.
- We put $\tilde{\Sigma} = \Sigma_{\alpha}$ for α such that $\Sigma_{\alpha} = \Sigma_{\alpha+2}$.

Completeness conjecture – 2018 version

Let us write:

- Σ ⊨ u = v to mean that the pseudoidentity u = v is valid in the pseudovariety [[Σ]];
- $\Sigma \vdash u = v$ if u = v can be proved from Σ .
- It is obvious that the enriched proof scheme is sound in the sense that

$$\Sigma \vdash u = v \implies \Sigma \models u = v.$$

Conjecture

For every pseudovariety **U** of a finite algebraic type consisting of finitary operations, the enriched proof scheme is complete in the sense that, for every set $\Sigma \cup \{u = v\}$ of **U**-pseudoidentities,

$$\Sigma \models u = v \implies \Sigma \vdash u = v.$$

Pseudoequational proof theory Completeness conjecture Results from the 2018 paper

Some results from the Lisbon conference

Theorem

The conjecture holds for the pseudovariety of all finite groups.

That is U = G. Proof is based on properties of groups.

Theorem

For U = M, the set $\Sigma = \{x^{\omega} = 1\}$ satisfies the conjecture.

The proof uses deep results concerning κ -reducibility of **G**. We also prove the conjecture for usual bases Σ of pseudovarieties **A**, **J**, **Com**, **R**, **DA**, **CR**.

Corollary

For U = M, every set Σ of pseudoidentities defining a group pseudovariety satisfies the conjecture.

Closed congruences Profinite algebras

Closed congruences

- Σ is a closed congruence on Ω_AU generated by Σ₀, or a fully invariant closed congruence generated by Σ.
 (A congruence is closed if it is a closed subset of the space Ω_AU × Ω_AU.)
- The conjecture is equivalent to stating that Σ is a profinite congruence in the sense that Ω_AU/Σ is a profinite algebra.
- Every closed congruence on a profinite group is profinite.
- This is not true for profinite semigroups.

What we can say about quotient of profinite semigroups (or algebras) by closed congruences in general? (We ignore now that $\tilde{\Sigma}$ is fully invariant.)

General observations for profinite algebras

- A topological algebra is profinite if it is a residually finite 0-dimensional compact Hausdorff space with basic operations being continous functions.
- A compact Hausdorff space is 0-dimensional iff it is totally disconnected such a space is called a Stone space.
- The quotient space X/θ of a compact Hausdorff space X by a closed equivalence relation θ is also compact Hausdorff.

Theorem (Gehrke 2016)

Let *A* be a profinite algebra and let θ be a closed congruence on *A* such that A/θ is 0-dimensional. Then A/θ is profinite.

So, the crucial property is 0-dimensionality.

Countable case Unary algebras New conjecture

Normal spaces

- A topological space is said to be normal if disjoint closed sets may be separated by disjoint open sets.
- It is an exercise in compactness to show that compact Hausdorff spaces are normal.
- (Urysohn) In a normal space, closed subsets may be separated by continuous functions into the interval [0, 1] (*f* : *X* → [0, 1] such that *f*(*C*) = {0} and *f*(*D*) = {1}).
- Since the image of a connected space by a continuous function is connected and the connected subspaces of a real interval are the subintervals, we deduce that a countable normal connected space is a singleton.
- Thus a countable normal space is totally disconnected.

Countable case Unary algebras New conjecture

Countable Stone spaces

Proposition

The quotient S/θ of a Stone space S by a closed equivalence relation θ of countable index is also a Stone space.

Theorem

Every closed congruence of countable index on a profinite algebra is a profinite congruence.

Corollary

The conjecture holds for the pseudovariety J.

Countable case Unary algebras New conjecture

Unary algebras

- Consider a finite set *A* whose elements are viewed as symbols of unary operations.
- An A-unary algebra is a set U together with a function a_U : U → U for each a ∈ A.
- These functions generate a subsemigroup S_U of the full transformation semigroup U^U.
- For every semigroup S containing a set A we can define U(S) as an A-unary algebra with domain S¹ and operations given by a_{U(S)}(s) = s ⋅ a.
- The free A-unary algebra over the singleton set {x} is isomorphic to U(A⁺).

Countable case Unary algebras New conjecture

Profinite unary algebras

- In the profinite case one can prove the analog result: The free profinite *A*-unary algebra Ω_{x}Un over the singleton set {x} is isomorphic to U(Ω_AS), where Ω_AS is the free profinite semigroup over *A*.
- Moreover, fully invariant closed congruences of Ω_{{x}}Un correspond to closed congruences of Ω_AS.
- However, we know an example of closed congruence of $\overline{\Omega}_A S$ which is not profinite.
- This gives a counterexample to the conjecture concerning completeness of pseudoequational proof theory.

Theorem

There is a pseudovariety **U** of unary algebras and a closed fully invariant congruence θ on $\overline{\Omega}_{\{x\}}$ **U** that is not profinite.

Countable case Unary algebras New conjecture

The counterexample

- For $A = \{a, b\}$ we consider $\overline{\Omega}_A K$.
- Note that the infinite words form a closed subspace of $\overline{\Omega}_A \mathbf{K}$ homeomorphic with the Cantor set.
- Let θ be the equivalence relation on Ω_AK which identifies two infinite words if and only if they are equal or constitute a pair of the form (*wab^ω*, *wba^ω*), with *w* a finite word; finite words form singleton classes.
- θ is a closed congruence on Ω_AK and we consider the associated fully invariant closed congruence θ̃ on Ω_{x}K^u.
- Then Ω_{x}K^u/θ̃ is not profinite (it contains a closed subspace homeomorphic with the interval [0, 1], which is not 0-dimensional).

Countable case Unary algebras New conjecture

Completeness conjecture – 2019 version

Conjecture

For every pseudovariety of finite semigroups, the enriched proof scheme is complete.

Does K satisfy the conjecture?

 Topic and previous results
 Countable case

 Profinite congruences
 Unary algebras

 New results
 New conjecture

Thank you