Ordered Kovács-Newman semigroups

Jonatan Kolegar

Department of Mathematics and Statistics Masaryk University

10. 6. 2019

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (HISP operators)

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

 $\mathcal{L}(\boldsymbol{S})...$ lattice of pseudovarieties of semigroups

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

 $\mathcal{L}(\mathbf{S})$...lattice of pseudovarieties of semigroups $\mathcal{L}_o(\mathbf{S})$...lattice of pseudovarieties of ordered semigroups

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

 $\mathcal{L}(\mathbf{S})$...lattice of pseudovarieties of semigroups $\mathcal{L}_o(\mathbf{S})$...lattice of pseudovarieties of ordered semigroups

Kovács-Newman semigroups

• Rhodes, Steinberg, 2004 and 2009 (The q-theory of Finite Semigroups)

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

 $\mathcal{L}(\mathbf{S})$...lattice of pseudovarieties of semigroups $\mathcal{L}_o(\mathbf{S})$...lattice of pseudovarieties of ordered semigroups

Kovács-Newman semigroups

- Rhodes, Steinberg, 2004 and 2009 (The q-theory of Finite Semigroups)
- subdirectly indecomposable

Pseudovarieties

Pseudovarieties

Pseudovariety of semigroups...class closed under homomorphic images, subsemigroups, finitary direct products (\mathbb{HSP} operators) Assume all semigroups to be finite.

 $\mathcal{L}(\mathbf{S})$...lattice of pseudovarieties of semigroups $\mathcal{L}_o(\mathbf{S})$...lattice of pseudovarieties of ordered semigroups

Kovács-Newman semigroups

- Rhodes, Steinberg, 2004 and 2009 (The q-theory of Finite Semigroups)
- subdirectly indecomposable
- tool for irreducibility results

Pseudovarieties

Irreducibility

Join

$\mathbf{V} \lor \mathbf{W} = \mathbb{HSP}_{fin}(\mathbf{V} \cup \mathbf{W}) = \mathbb{HS}(\{S \times T \mid S \in \mathbf{V}, T \in \mathbf{W}\})$

Pseudovarieties

Irreducibility

Join

$$\mathbf{V} \lor \mathbf{W} = \mathbb{HSP}_{fin}(\mathbf{V} \cup \mathbf{W}) = \mathbb{HS}(\{S \times T \mid S \in \mathbf{V}, T \in \mathbf{W}\})$$

Irreducibility

We say that pseudovariety U is finite join irreducible (fji) if

 $\mathbf{U} \leq \mathbf{V} \lor \mathbf{W}$ then either $\mathbf{U} \leq \mathbf{V}$ or $\mathbf{U} \leq \mathbf{W}$.

Definition Group Setting Semigroup Setting

Definitions

Preliminary definitions (group context):

 G is subdirect product of G₁, G₂ (G ≪ G₁ × G₂) if G ≤ G₁ × G₂ and projections π_i: G → G_i are surjective

Definition Group Setting Semigroup Setting

Definitions

Preliminary definitions (group context):

- G is subdirect product of G_1, G_2 ($G \ll G_1 \times G_2$) if $G \leq G_1 \times G_2$ and projections $\pi_i \colon G \to G_i$ are surjective
- G is **subdirectly indecomposable** if at least one of the projection in subdirect product is isomorphism

Definition Group Setting Semigroup Setting

Definitions

Preliminary definitions (group context):

- G is subdirect product of G_1, G_2 ($G \ll G_1 \times G_2$) if $G \leq G_1 \times G_2$ and projections $\pi_i : G \to G_i$ are surjective
- G is **subdirectly indecomposable** if at least one of the projection in subdirect product is isomorphism
- G is **monolithic** if it has unique minimal (non-trivial) normal subgroup (called monolith)

Definition Group Setting Semigroup Setting

Definitions

Preliminary definitions (group context):

- G is subdirect product of G_1, G_2 ($G \ll G_1 \times G_2$) if $G \leq G_1 \times G_2$ and projections $\pi_i \colon G \to G_i$ are surjective
- G is **subdirectly indecomposable** if at least one of the projection in subdirect product is isomorphism
- G is **monolithic** if it has unique minimal (non-trivial) normal subgroup (called monolith)

Note that subdirectly indecomposable \Leftrightarrow monolithic.

Definition Group Setting Semigroup Setting

Definition

Named after Kovács, Newman (1966) studying varieties of groups.

Kovács-Newman (KN) group (Rhodes, Steinberg, 2004) Non-trivial finite group G is KN **if** whenever there is a diagram

$$G \stackrel{\varphi}{\leftarrow} H \ll G_1 \times G_2,$$

with H, G_1, G_2 finite groups, φ factors through one of the projections.

Definition Group Setting Semigroup Setting

Definition

Named after Kovács, Newman (1966) studying varieties of groups.

Kovács-Newman (KN) group (Rhodes, Steinberg, 2004) Non-trivial finite group G is KN **if** whenever there is a diagram

$$G \stackrel{\varphi}{\leftarrow} H \ll G_1 \times G_2,$$

with H, G_1, G_2 finite groups, φ factors through one of the projections.

Since $G \in \mathbf{H_1} \vee \mathbf{H_2}$ if there is such diagram with $G_i \in \mathbf{H_i}$, then also the pseudovariety $\mathbb{HSP}_{fin}(G)$, with G being KN group, is a **fji** pseudovariety.

Definition Group Setting Semigroup Setting

Classification

Theorem (Rhodes, Steinberg, 2009)

Finite group G is KN \Leftrightarrow G is monolithic with non-abelian monolith.

Definition Group Setting Semigroup Setting

Classification

Theorem (Rhodes, Steinberg, 2009)

Finite group G is KN \Leftrightarrow G is monolithic with non-abelian monolith.

Example

Group S_n is KN for $n \ge 5$, as A_n forms the monolith.

Pseudovariety **G** of finite groups is irreducible.

Definition Group Setting Semigroup Setting

Semigroup Setting

Definition is analogic to that of KN group:

Kovács-Newman (KN) semigroup

Non-trivial finite semigroup S is KN if whenever there is a diagram

$$S \stackrel{\varphi}{\leftarrow} T \ll S_1 \times S_2,$$

with T, S_1, S_2 finite semigroups, φ factors through one of the projections.

Definition Group Setting Semigroup Setting

Semigroup Setting

Definition is analogic to that of KN group:

Kovács-Newman (KN) semigroup

Non-trivial finite semigroup S is KN if whenever there is a diagram

$$S \stackrel{\varphi}{\leftarrow} T \ll S_1 \times S_2,$$

with T, S_1, S_2 finite semigroups, φ factors through one of the projections.

The classification is more complicated. We need to define group mapping semigroups.

Definition Group Setting Semigroup Setting

Semigroup Setting

Kernel of a semigroup S is a minimal two-sided ideal denoted K(S).

Definition Group Setting Semigroup Setting

Semigroup Setting

Kernel of a semigroup S is a minimal two-sided ideal denoted K(S).

Group mapping over kernel (GM) semigroups

Semigroup S is GM over its kernel K(S) if S acts faithfully on both left and right of K(S) and K(S) contains non-trivial subgroup.

Definition Group Setting Semigroup Setting

Semigroup Setting

Kernel of a semigroup S is a minimal two-sided ideal denoted K(S).

Group mapping over kernel (GM) semigroups

Semigroup S is GM over its kernel K(S) if S acts faithfully on both left and right of K(S) and K(S) contains non-trivial subgroup.

Theorem (Rhodes, Steinberg, 2009)

Finite semigroup is a Kovács-Newman semigroup if and only if it is group mapping semigroup over its kernel and the maximal subgroup of the kernel is a KN group (i.e. monolithic with non-abelian monolith).

Definition Group Setting Semigroup Setting

Applications

Non-isomorphic KN semigroups generate irreducible distinct pseudovarieties.

Definition Group Setting Semigroup Setting

Applications

Non-isomorphic KN semigroups generate irreducible distinct pseudovarieties.

Theorem (Rhodes, Steinberg, 2009)

Pseudovariety **CS** of completely simple semigroups is finite join irreducible.

Other fji results: CR, DS ...

Ordered Case Ordered Completely Simple semigroups

Ordered Case

Does this yield some results for the lattice $\mathcal{L}_o(\mathbf{S})$?

Ordered Case Ordered Completely Simple semigroups

Ordered Case

Does this yield some results for the lattice $\mathcal{L}_o(\mathbf{S})$?

Lemma

Group mapping semigroups are unorderable.

Ordered Case Ordered Completely Simple semigroups

Ordered Case

Does this yield some results for the lattice $\mathcal{L}_o(\mathbf{S})$?

Lemma

Group mapping semigroups are unorderable.

Theorem (JK, 2018)

KN ordered semigroups are precisely KN semigroups ordered by equality.

Ordered Case Ordered Completely Simple semigroups

Ordered Case

Does this yield some results for the lattice $\mathcal{L}_o(\mathbf{S})$?

Lemma

Group mapping semigroups are unorderable.

Theorem (JK, 2018)

KN ordered semigroups are precisely KN semigroups ordered by equality.

Irreducibility of certain pseudovarieties in $\mathcal{L}_o(\mathbf{S})$ studied $(\mathbf{A}, \overline{\mathbf{H}}, \mathbf{B}, \dots$ by Almeida, Klíma (2015, 2018) using different techniques).

Ordered Case Ordered Completely Simple semigroups

Pseudovariety **CS** in $\mathcal{L}_o(S)$

Corollary (JK, 2018)

Pseudovariety **CS** of ordered completely simple semigroups is finite join irreducible in the lattice $\mathcal{L}_o(S)$.

Thank you so much for your attention.