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We assume familiarity with the notions of variety and
quasivariety.

Notation

Let K be a class of semigroups.

• V(K) is the variety generated by K.

• Q(K) is the quasivariety generated by K.

Definition

A quasivariety is called locally finite if all of its finitely
generated members are finite.

In the early 1980s, Mark Sapir determined which locally finite
varieties have a finite number of subquasivarieties. This talk
grew out of an analysis of parts of his proof.
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Definition

A finite semigroup is called quasicritical if it is not in the
quasivariety generated by its proper subsemigroups.

Examples:

• Any 2-element semigroup is quasicritical.

• A finite Abelian group is quasicritical if and only if it is a
cyclic group of prime-power order.

• The only quasicritical semilattice is the 2-element
semilattice I.
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Notation

Let Q be a quasivariety. The lattice of subquasivarieties of Q
is denoted by Lq(Q).

Theorem

Let Q be a locally finite quasivariety, and let K ∈ Lq(Q).
Then K = Q(U) for some set U of quasicriticals in Q.

In other words, every subquasivariety of Q is generated by a
set of quasicriticals.

Theorem

If Q is a locally finite quasivariety, then Lq(Q) is finite if and
only if Q contains finitely many quasicriticals up to
isomorphism.
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The dual semigroups of R and P are denoted L and Q,
respectively.

We also write I for the 2-element semilattice, and N for the
2-element null semigroup.
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Definition

A semigroup is called aperiodic if all of its subgroups are trivial.

Conjecture (my motivation)

Let S be a finite aperiodic semigroup. The following are
equivalent:

(i) S dualisable;

(ii) S ∈ V(L,R, I,N) ∪ V(R,P) ∪ V(L,Q).

So far, I have completed the proof of (ii) =⇒ (i), with one
more case needed for the converse. A key component of the
proof of (ii) =⇒ (i) was an explicit description of the
subquasivariety lattices of V(L,R, I,N) and V(R,P).
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The description of Lq(V(L,R, I,N)) turned out to be
straightforward. But Lq(V(R,P)) was unexpectedly
interesting; this will be the focus of our talk.

Because V(R,P) is locally finite, we can find all of its
subquasivarieties by finding its quasicriticals (by the earlier
result).

As part of Mark Sapir’s work (mentioned earlier), he described
the quasicriticals in some varieties, one of which was V(R,P).

Lemma (Sapir)

Up to isomorphism, the only quasicriticals in V(R,P) are R,
R0, I, N, and P.
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Definition

Let A be a (partially) ordered set. A down-set of A is a subset
U of A that is decreasing; that is, y 6 x ∈ U =⇒ y ∈ U .

• We could find all subquasivarieties of V(R,P) by forming
Q(U) for each U ⊆ {R,R0, I,N,P}.
• But there are 32 choices for U . We can be more efficient.

• Let us order the quasicriticals {R,R0, I,N,P} by
embedding (i.e., S 6 T if S embeds into T).

• Then every subquasivariety is generated by a down-set of
this ordered set.

• This is simply because a quasivariety is closed under
forming subsemigroups.
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Example: Q(R0,N) may also be generated by {R,R0, I,N}.
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Lemma (Sapir)

Up to isomorphism, the only quasicriticals in V(R,P) are R,
R0, I, N, and P.

Definition

We denote by C the 4-element semigroup below.

· e u a b
e e u a b
u a b a b
a a b a b
b a b a b

Proposition (C = ‘Counterexample’)

C is a quasicritical semigroup in V(R,P).
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Well, maybe C is the only other quasicritical...

Proposition (no, it isn’t)

C0 is a quasicritical semigroup in V(R,P).

A computer search found no others of size 67.

Eventually, we obtained:

Theorem (Koussas)

Up to isomorphism, the only quasicriticals in V(R,P) are R,
R0, I, N, P, C, and C0.
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• It is not clear if Mark Sapir’s main results still hold. The
lattice Lq(V(R,P)) is still finite; it is just bigger than we
thought.

• To resolve the problem, one would need to extend our
description of quasicriticals to the variety V(R,P,G),
where G is an Abelian group.

• The aperiodic case was surprisingly difficult, so the
general case involving groups could turn out to be very
difficult.

• For now, I will (hopefully) publish the results of this talk.
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Grazie!


