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Partial actions of groups

I G - a group, X - a set

I A left partial action (Exel, 1998) of G on X is a map
Z ⊆ G × X → X , (g , x) 7→ g · x , such that:

1. ∃g · x implies that ∃g−1 · (g · x) and g−1 · (g · x) = x ;

2. ∃g · (h · x) implies that ∃gh · x and ∃g · (h · x) = gh · x ;

3. ∃1 · x for every x ∈ X and 1 · x = x .

I If G acts on Y and X ⊆ Y , the action restricts to a partial action
of G on X .

I A partial action of G on X is globalizable: it arises as a restriction
of an action of G on some Y ⊇ X .
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Partial actions and premorphisms

I G acts partially on X via (g , x) 7→ g · x

I g ∈ G : ϕg ∈ I(X ) is given by

domϕg = {x ∈ X : ∃g · x}

ϕg (x) = g · x , x ∈ domϕg

I The map g 7→ ϕg is a premorphism, that is, it satisfies axioms:

(PM1) ϕgϕh ≤ ϕgh;

(Inv) ϕg−1 = ϕ−1
g ;

(U) ϕ(1) = 1.

I There is a one-to-one correspondence between partial actions of G
on X and premorphisms G → I(X ).

I This extends to partial actions of inverse semigroups and
premorphisms between inverse semigroups (the latter known since
McAlister and Reilly, 1977).
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Partial actions of monoids

I M - a monoid, X - a set

I A left partial action (Megrelishvili and Schröder, 2004) of M on X
is a map Z ⊆ M × X → X , (m, x) 7→ m · x , such that:

1. If ∃n · x then ∃m · (n · x) if and only if ∃mn · x , in which case
m · (n · x) = mn · x ;

2. ∃1 · x for every x ∈ X and 1 · x = x .

I If M is a group, this is equivalent to the definition of a partial
action of a group.

I Partial actions of monoids as defined above are globalizable.
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Restriction semigroups
A left restriction semigroup is an algebra (S ; · ,+ ) of type (2, 1) where
(S ; ·) is a semigroup and:

x+x = x , x+y+ = y+x+, (x+y)+ = x+y+, (xy)+x = xy+.

A right restriction semigroup is an algebra (S ; · ,∗ ) of type (2, 1) where
(S ; ·) is a semigroup and:

xx∗ = x , x∗y∗ = y∗x∗, (xy∗)∗ = x∗y∗, y(xy)∗ = x∗y .

A two-sided restriction semigroup, or just a restriction semigroup, is an
algebra (S ; · ,∗ ,+ ), where (S ; · ,+ ) is a left restriction semigroup, (S ; · ,∗ )
is a right restriction semigroup, and:

(x+)∗ = x+, (x∗)+ = x∗.

The semilattice of projections of S :

P(S) = {s∗ : s ∈ S} = {s+ : s ∈ S}

e ∈ P(S)⇒ e2 = e, e∗ = e+ = e
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Some notions and examples

I If S = P(S) then S is a semilattice. Conversely, any semilattice E is
a restriction semigroup with e∗ = e+ = e.

I An inverse semigroup S is restriction with s∗ = s−1s and s+ = ss−1.

I PT (X ) is right restriction with respect to the f ∗ = iddomf .

I Any right restriction semigroup is isomorphic to a subsemigroup of
some PT (X ) closed under ∗.

I Partial order: s ≤ t if s = ts∗

I The compatibility relation: s ∼ t ⇔ st∗ = ts∗ and t+s = s+t.

I If |P(S)| = 1 then S is a monoid with P(S) = {1} called a reduced
restriction semigroup. Conversely, any monoid M is a (reduced)
restriction semigroup with m∗ = m+ = 1 for all m ∈ M.

I σ - the minimum reduced restriction semigroup congruence on S

I S is called proper if σ =∼. Proper restriction semigroups generalize
E -unitary inverse semigroups.
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Partial monoid actions and premorphisms

I A map M → S (where S - right restriction, two-sided restriction,
inverse), m 7→ ϕm, is a premorphism, if it satisfies axioms:

(PM1) ϕmϕn ≤ ϕmn;

(U) ϕ(1) = 1.

I It is a right strong premorphism (Hollings, 2007, for S right
restriction), if, in addition:

(Sr) ϕmϕn = ϕmnϕ
∗
n .

I Premorphisms to PT (X ) satisfying (Sr) correspond to partial
actions in the sense of Megrelishvili and Schröder.

7/17



Structure of proper restriction semigroups

I M a monoid, X a semilattice

I M acts partially on X by order automorphisms between
(non-empty) order ideals of X .

I Equivalently, ϕ : M → I(X ) is a premorphism.

I M oϕ X - the partial action product - is a proper restriction
semigroup.

I S - proper restriction semigroup

I ϕ : S/σ → I(P(S)), m 7→ ϕm, the underlying premorphism of S :

domϕm = {e ∈ P(S) : e ≤ s∗, for some s satisfying σ\(s) = m}

ϕm(e) = (se)+, where σ\(s) = m

I S ' P(S) oϕ S/σ (Cornock and Gould, 2011)

I This extends the Petrich-Reilly result (1979) on the structure of
E -unitary inverse semigroups.
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Premorphisms between restriction semigroups

I S , T - (two-sided) restriction semigroups

I A map ϕ : S → T will be called a premorphism if the following
conditions hold:

(PM1) ϕ(s)ϕ(t) ≤ ϕ(st) for all s, t ∈ S ;

(PM2) ϕ(s)∗ ≤ ϕ(s∗) for all s ∈ S ;

(PM3) ϕ(s)+ ≤ ϕ(s+) for all s ∈ S .

I Remark. Let S be a monoid and T a restriction monoid. If ϕ(S)
generates T then (PM1), (PM2) and (PM3) are equivalent to
(PM1) and (U).

I Premorphisms S → I(X ) correspond to partial actions of S by
partial bijections.
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Proper extensions of restriction semigroups

I S , T - (two-sided) restriction semigroups

I A morphism ψ : S → T is called proper if it is surjective and

ψ(s) = ψ(t)⇒ s ∼ t, for all s, t ∈ S .

I Proper morphisms between restriction semigroups generalize:

(i) idempotent-pure morphisms between inverse semigroups (S and T
inverse);

(ii) proper restriction semigroups:

if T is reduced then ψ : S → T is proper iff S is a proper restriction
semigroup, T ' S/σ and ψ equivalent to σ\ : S → S/σ.

I For S , T right restriction semigroups, proper extensions have been
introduced and studied by Gomes (2005).
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A construction

I S - a restriction semigroup, Y - a semilattice, q : Y → P(S) a
morphism of semilattices, ϕ : S → I(Y ) a premorphism and:

(A1) for all s ∈ S : domϕs and ranϕs are order ideals

(A2) for all s ∈ S : ϕs is an order automorphism

(A3) for all e ∈ P(S): (q−1(e))↓ ⊆ domϕe ⊆ q−1(e↓)

(A4) for all s ∈ S : domϕs ∩ q−1(s∗) 6= ∅

I The partial action product

Y oq
ϕ S = {(y , s) ∈ Y × S : y ∈ ranϕs and q(y) = s+};

I The operations · ,∗ ,+:

(y , s)(x , t) = (ϕs(ϕ−1
s (y) ∧ x), st)

(y , s)∗ = (ϕ−1
s (y), s∗), (y , s)+ = (y , s+)

I Proposition. Y oq
ϕ S is a restriction semigroup, and

Ψ: Y oq
ϕ S → S , (y , s) 7→ s, is a proper morphism.
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The two underlying premorphisms of a proper extension

I ψ : T → S - a proper morphism

I For s ∈ S we define ψ̂s , ψ̃s ∈ I(P(T )):

dom ψ̂s = {e ∈ P(T ) : e ≤ t∗ for some t ∈ T such that ψ(t) ≤ s},

dom ψ̃s = {e ∈ P(T ) : e ≤ t∗ for some t ∈ T such that ψ(t) = s}.

I For e ∈ dom ψ̂s (resp. e ∈ dom ψ̃s) we set

ψ̂s(e) = (te)+ where t ∈ T is such that e ≤ t∗

and ψ(t) ≤ s (resp. ψ(t) = s).

I ψ̂ - the upper underlying premorphism of ψ

I ψ̃ - the lower underlying premorphism of ψ
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Structure of proper extensions

I ψ : T → S - a proper morphism between restriction semigroups

I p = ψ|P(T )

Theorem (M. Dokuchaev, M. Khrypchenko, GK, 2019)

T ' P(T ) op

ψ̂
S ' P(T ) op

ψ̃
S

I If S is reduced, we obtain the Cornock-Gould structure result on
proper restriction semigroups.

I If S , T are inverse semigroups, we obtain a ‘partial action’ variant
of O’Carroll’s (1977) result on the structure of idempotent pure

extensions: restricting O’Carroll’s action, one obtains ψ̂.
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Strong and locally strong premorphisms

I S , T - restriction semigroups

I A premorphism ϕ : S → T is called strong if it satisfies:

(Sr) ϕ(s)ϕ(t) = ϕ(st)ϕ(t)∗ for all s, t ∈ S ;

(Sl) ϕ(s)ϕ(t) = ϕ(s)+ϕ(st) for all s, t ∈ S .

I A premorphism ϕ : S → T is called locally strong if it satisfies:

(LSr) ϕ(st+)ϕ(t) = ϕ(st)ϕ(t)∗ for all s, t ∈ S ;

(LSl) ϕ(s)ϕ(s∗t) = ϕ(s)+ϕ(st) for all s, t ∈ S .

I If S is a monoid (or a group) then strong = locally strong.

I Proposition

I Locally strong premorphisms extend premorphisms between inverse
semigroup satisfying ϕ(s−1) = ϕ(s)−1, for all s ∈ S .

I A premorphism ϕ : S → T is strong if and only if it is locally strong
and order-preserving.
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Strongness and local strongness of ψ̂ and ψ̃

I ψ : T → S - proper morphism between restriction semigroups

I The premorphism ψ̂ is necessarily order-preserving

I The premorphism ψ̃ is order-preserving if and only if ψ̃ = ψ̂.

I Theorem (M. Dokuchaev, M. Khrypchenko, GK, 2019). The
following statements are equivalent:

1. ψ̂ satisfies condition (LSr) (respectively (LSl));

2. ψ̂ satisfies condition (Sr) (respectively (Sl));

3. ψ̃ satisfies condition (LSr) (respectively (LSl)).

Consequently, ψ̂ is strong if and only if ψ̂ is locally strong if and
only if ψ̃ is locally strong.
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Categories of partial actions of S

I The category A(S):

I objects: (α, p,X ) where X is a semilattice, p : X → P(S) a
morphism of semilattices and α : S → I(X ) a premorphism, so that
conditions (A1)–(A4) are satisfied.

I a morphism from (α, pα,X ) to (β, pβ ,Y ) is a semilattice morphism
p : X → Y such that:
(M1) pα = pβp;

(M2) p(domαs) ⊆ domβs and βs(p(e)) = p(αs(e)) for all e ∈ domαs ;

(M3) p(domαs ∩ p−1
α (s∗)) = domβs ∩ p−1

β (s∗) for all s ∈ S.
I The definition of a morphism agrees with that in the sense of

Abadie (2003).

I The subcategories Ã(S) and Â(S) of A(S) contain as objects

premorphisms of the form ψ̂ and ψ̃, respectively.

I If S is a monoid (in particular, a group), Ã(S) = Â(S) = A(S).

I Theorem (M. Dokuchaev, M. Khrypchenko, GK, 2019).

I The category Â(S) is a reflective subcategory of A(S);

I Ã(S) is a coreflective subcategory of A(S);

I The categories Â(S) and Ã(S) are isomorphic.
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Equivalence of categories of partial actions and proper extensions of S
I S - restriction semigroup

I The category P(S):

I objects: proper morphisms ψ : T → S where T is a restriction
semigroup

I a morphism from ψ1 : T1 → S to ψ2 : T2 → S is a morphism
γ : T1 → T2 of restriction semigroups such that ψ2γ = ψ1.

I If T and S are inverse, we obtain the category of idempotent pure
extensions of S considered by Lawson (1996).

I Let (α, p,X ) ∈ Â(S). The assignment (α, p,X ) ; X op
α S gives

rise to a functor Û : Â(S)→ P(S).

I Let ψ : T → S ∈ P(S). The assignment ψ ; (ψ̂, ψ|P(T ),S) gives

rise to a functor Ĝ : P(S)→ Â(S).

I Theorem (M. Dokuchaev, M. Khrypchenko, GK, 2019).

The functors Û and Ĝ establish an equivalence between the
categories Â(S) and P(S).

I Corollary. Let S be a monoid or, in particular, a group. Then the
categories P(S) and A(S) are equivalent.
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