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(1) Introduction (groups)



Groups and amenability

Theorem-Definitions (von Neumann-Tarski-Følner 19∼∼)
G countable and discrete group. TFAE:

1. G is amenable, i.e., µ∶ P (G) → [0,1] normalized such that

µ (A ⊔B) = µ (A) + µ (B) and µ (g−1A) = µ (A) .

2. G is not paradoxical: /∃ gi ,hj ∈ G ,Ai ,Bj ⊂ G such that

G = g1A1 ⊔ ⋅ ⋅ ⋅ ⊔ gnAn = h1B1 ⊔ ⋅ ⋅ ⋅ ⊔ hmBm

⊃ A1 ⊔ ⋅ ⋅ ⋅ ⊔An ⊔B1 ⊔ ⋅ ⋅ ⋅ ⊔Bm.

3. G has a Følner sequence, i.e., {Fn}n∈N with ∅ ≠ Fn ⊂ G finite

∣gFn ∪ Fn∣ / ∣Fn∣
n→∞
ÐÐÐ→ 1.
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(2) Inverse semigroups



Introduction to inverse semigroups I

S inverse semigroup:

for all s ∈ S there is a unique s∗ ∈ S

such that ss∗s = s and s∗ss∗ = s∗.

Example: I (X ) = {(s,A,B) ∣ A,B ⊂ X and s ∶A↔ B}.

• A = domain of s = Ds∗s .

• B = range of s = Dss∗ .

• (s,A,B) ○ (t,C ,D) ∶= (st, t−1 (D ∩A) , s (D ∩A)).

Actually: S ⊂ I (S) as inverse semigroups ↝ s ∶Ds∗s ↦ Dss∗ .

Notions/properties:

• e ∈ S projection when e = e2 = e∗ ( ⇔ A = B and e = idA).

• E (S) ∶= {s∗s ∣ s ∈ S} is commutative.

• e, f ∈ E (S) ↝ e ≤ f ⇔ ef = e.
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Introduction to inverse semigroups II

Example: bicyclic monoid.

T ∶= ⟨a, a∗ ∣ a∗a = 1⟩

= {aia∗j ∣ i , j ∈ N}.

E (T ) = {aia∗i ∣ i ∈ N} = {1, aa∗, a2a∗2, . . .} ≅ N.

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2

a3

a2a∗

a3a∗

a2a∗2 a2a∗3

a3a∗2 a3a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

. . .

⋰
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Introduction to inverse semigroups III

Definition (Day - 1957)
S is amenable if there is an invariant probability measure, i.e.,
a measure µ∶ P (S) → [0,1] such that for every s ∈ S and A ⊂ S

µ (s−1A) = µ (A) ,

where s−1A ∶= {t ∈ S ∣ st ∈ A}.

Examples:

1. All amenable groups.

2. 0 ∈ S ↝ µ ({0}) = 1 (or, equivalently, µ = δ0).

3. S ∶= F2 ⊔ {1} is not amenable.

Questions: Alternative point of view? Amenability forwards?
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Domain-measurability and localization I

Remark:

Pick S and µ invariant measure (µ (A) = µ (s−1A)). Then:

(ii) µ (A) = µ (A ∩Dss∗)+

(i) If A ⊂ Dss∗ then

.

Proposition (Ara, Lledó, M. - 2019)
µ is invariant ⇔ both following conditions are satisfied:

1. Domain-measure: µ (A) = µ (sA) for all A ⊂ Ds∗s .

2. Localization: µ (A) = µ (A ∩Ds∗s) for all s ∈ S ,A ⊂ S .
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Domain-measurable semigroups

Examples of domain-measurable semigroups:

1. All amenable semigroups.
2. Non-inv. & domain-measure: S = ({0,1} , ⋅) and µ = δ1.
3. Non-ame. & domain-measurable: S = F2 ⊔ {1} and µ = δ1.

Invariance explanation:

S S

Ds∗s Dss∗

s ⋅

A

sA ↝ (i) µ (A) = µ (sA) .

B

↝ (ii) µ (B) = µ (B ∩Ds∗s)

= µ (B ∩Dss∗) .
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S S

Ds∗s Dss∗

s ⋅

A

sA ↝ (i) µ (A) = µ (sA) .

B

↝ (ii) µ (B) = µ (B ∩Ds∗s)

= µ (B ∩Dss∗) .
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(3) Domain-measurable inverse
semigroups



Følner sets in domain-measurable semigroups

Følner & paradoxicality ↝ domain point of view.

Definition (Ara, Lledó, M. - 2019)

(i) S is domain-Følner if there is {Fn}n∈N, with ∅ ≠ Fn ⊂ S and

∣s (Fn ∩Ds∗s) ∪ Fn∣

∣Fn∣

n→∞
ÐÐÐ→ 1 for all s ∈ S .

(ii) S is paradoxical if there are si , tj ∈ S , Ai ⊂ Ds∗i si
and

Bj ⊂ Dt∗j tj
with

S = s1A1 ⊔ ⋅ ⋅ ⋅ ⊔ snAn = t1B1 ⊔ ⋅ ⋅ ⋅ ⊔ tmBm

⊃ A1 ⊔ . . .An ⊔B1 ⊔ ⋅ ⋅ ⋅ ⊔Bm.
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Tarski’s characterization & domain-measurable

Theorem (Ara, Lledó, M. - 2019)
Let S be countable, discrete & unital. TFAE:

1. S is domain-measurable.

2. S is not paradoxical.

3. S is domain-Følner.

Proof:

1 ⇒ 2: Typical 2 ≥ 1 argument.

2 ⇒ 1: Tarski’s type semigroup.

1 ⇒ 3: extend µ to `∞ (S) & Namioka’s trick.

3 ⇒ 1: Consider µ (A) ∶= limn→ω ∣A ∩ Fn∣ / ∣Fn∣.
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The Roe algebra and its trace space

Relation to C∗-algebras:

RS ∶= C∗(`∞ (S) ∪ {Vs ∣ s ∈ S} ) ⊂ B (`2 (S)) .

→ RS inherits much of the structure of S .
→ RS can be decomposed into direct sums.
→ Proper infiniteness of RS ⇔ paradoxicality of S .

Theorem (Ara, Lledó, M. - 2019)
S inverse semigroup. Then:

{Traces of RS} = {Amenable traces of RS}

↔ {Domain-measures of S} .
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(4) Role of the localization



Role of the localization I

Recall: µ invariant ⇔ µ domain-measure & µ localized.

Theorem (Gray, Kambites - 2017)
S semigroup satisfying the Klawe condition. TFAE:

1. S is amenable.

2. S has a strong Følner sequence: {Fn}n with ∅ ≠ Fn ⊂ S and

∣sFn ∪ Fn∣

∣Fn∣

n→∞
ÐÐÐ→ 1 and ∣sFn∣ = ∣Fn∣ .

Localization property: µ (B) = µ (B ∩Ds∗s)

s ∶Ds∗s ↦ Dss∗ injective ⇒ ∣F ∩Ds∗s ∣ = ∣s (F ∩Ds∗s)∣.
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Role of the localization II

Theorem (Ara, Lledó, M. - 2019)
S is amenable iff S has a Følner sequence within the domains:

there are {Fn}n∈N such that ∅ ≠ Fn ⊂ S and

∣sFn ∪ Fn∣

∣Fn∣

n→∞
ÐÐÐ→ 1 and Fn ⊂ Dss∗ (⇒ ∣s∗Fn∣ = ∣Fn∣) .

1 a∗ a∗2 a∗3

a aa∗ aa∗2 aa∗3

a2 a2a∗ a2a∗2 a2a∗3

⋮ ⋮ ⋮ ⋮

. . .

. . .

. . .

⋰

T = D1

Daa∗

F1
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(5) Conclusions & open problems



Conclusions & open problems

Conclusions: amenability behaves well in inverse semigroup theory
... within the domains Ds∗s ⊂ S .

Future research:

1. Do these results have analogues in groupoid theory?
Within the domains?

2. Relation to other properties?
• Soficity of S (Ceccherini-Silberstein & Coornaert, 2014).
• Property A (in metric spaces).
• Exactness of S .
• Approximation properties of some operator algebras.
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Thank you for your attention! Questions?
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