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Integrals of groups

Let G be a group. The derived group G ′ of G is the subgroup of
G generated by all commutators [g , h] = g−1h−1gh for g , h ∈ G .

By analogy with calculus, let us say that a group H is an integral
of G if H ′ = G .

By a similar analogy, we observe the following:

Lemma (Constant of integration)

1. If G = G1 × G2, then G ′ = G ′1 × G ′2,

2. Let G be a group, let H be an integral for G and let A be an
abelian group. Then H × A is an integral for G.
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Integrals of groups

So integrals are not unique (if they exist) and we do not expect all
groups to have integrals.

Problem
Which groups have integrals?

Example

We still do not know whether D8 × D8 is integrable!
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Integrable groups

Remark
Not every group is integrable!

Example

The smallest counterexample is the symmetric group G = S3.

If there were H integral, then H acts on C3 = H ′′ by conjugation.

Since Aut(C3) is abelian, then H ′ = S3 acts trivially on C3 = H ′′.

Contradiction!
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Integrable groups

There are indeed classes of integrable groups, for example:

Theorem (Guralnick, 1978)

Every (not necessarily finite) abelian group is integrable.

Proof. For every abelian group A we have

(A o C2)′ = {(a, a−1) | a ∈ A} ∼= A.



Integrable groups

There are indeed classes of integrable groups, for example:

Theorem (Guralnick, 1978)

Every (not necessarily finite) abelian group is integrable.

Proof. For every abelian group A we have

(A o C2)′ = {(a, a−1) | a ∈ A} ∼= A.



Integrable groups

There are indeed classes of integrable groups, for example:

Theorem (Guralnick, 1978)

Every (not necessarily finite) abelian group is integrable.

Proof. For every abelian group A we have

(A o C2)′ = {(a, a−1) | a ∈ A} ∼= A.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Integrable groups

Proposition

Let G = G1 × G2.

1. If G1 and G2 are integrable, then so is G .

2. If G is integrable and gcd(|G1|, |G2|) = 1, then G1 and G2 are
integrable.

3. If G1 is centerless and G2 is abelian, then G is integrable if
and only if G1 is integrable.

Remark
The “centerless” condition in the last part is essential since D8 is
not integrable, but C2 × D8 has an integral of order 128.

Theorem
A finite group with an integral also has a finite integral.



Some folklore results on integrals

Proposition

Let G be a group with a characteristic cyclic subgroup C which is
not contained in Z (G ). Then G has no integral.

Corollary

1. If n is even and n > 4, the dihedral group of order n is
non-integrable.

2. Let p and q be primes and q | p − 1. Then the non-abelian
group of order pq is centerless and non-integrable.

Proposition

For every n ≥ 5, symmetric group Sn is non-integrable.
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Smaller integrals?

Proposition

An abelian group of order n has an integral of order n1+o(1), but
does not always have one of order O(n).

Definition
A group G is finitely integrable if there exists a group H such
that H ′ ∼= G and |H : G | is finite.

Proposition

There exists torsion-free infinite abelian groups that are not finitely
integrable.
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Diverse behavior for the same order

Theorem
Of the two non-abelian groups of order p3 (p odd prime), the group
of exponent p has an integral, while that of exponent p2 does not.

Let AB = {positive integers n for which every group of order n is
abelian}, and INT = {positive integers for which every group of
order n is integrable}. By Guralnick’s result, AB ⊆ INT .

Theorem (Dickson, 1905)

An n ∈ N lies in AB if and only if n is cube-free and there do not
exist primes p and q such that either

1. p and q divide n and q | p − 1,

2. p2 and q divide n and q | p + 1.

Theorem
An n ∈ N lies in INT if and only if n is cube-free and there do
not exist primes p and q such that p and q divide n and q | p − 1.
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Can we integrate infinitely many times?

A perfect group (one satisfying G = G ′) is its own integral, and
so trivially can be integrated n times for every n.

Theorem
A finite group G can be integrated n times for every n ∈ N if and
only if it is the central product of an abelian group and a perfect
group.

Question
Is there an infinitely integrable finite group G, in the sense that
there exists an infinite chain of finite groups of the form

G = G ′1 ≤ G1 = G ′2 ≤ G2 = G ′3 ≤ . . . ?
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Can we integrate infinitely many times?

Remark
Bernhard Neumann showed in 1956 that there is no strictly
increasing such sequence if G2 is finitely generated.

However, if we relax the assumptions, we can succeed: there are
sequences as above with G finite but Gi infinite for i > 1, and also
sequences of finite groups such that

I G ′n ≥ Gn−1 for n > 0,

I G
(n)
n = G0.



Can we integrate infinitely many times?

Remark
Bernhard Neumann showed in 1956 that there is no strictly
increasing such sequence if G2 is finitely generated.

However, if we relax the assumptions, we can succeed: there are
sequences as above with G finite but Gi infinite for i > 1, and also
sequences of finite groups such that

I G ′n ≥ Gn−1 for n > 0,

I G
(n)
n = G0.



Can we integrate infinitely many times?

Remark
Bernhard Neumann showed in 1956 that there is no strictly
increasing such sequence if G2 is finitely generated.

However, if we relax the assumptions, we can succeed: there are
sequences as above with G finite but Gi infinite for i > 1, and also
sequences of finite groups such that

I G ′n ≥ Gn−1 for n > 0,

I G
(n)
n = G0.



Some things we do not know

1. Find a necessary and sufficient condition for a finite group to
be integrable.

2. Find a good bound for the order of the smallest integral of an
integrable group.

A solution to the second problem would help with the first.

Theorem
Let G be a group of order n with Z (G ) = 1. Then, if G is
integrable, it has an integral of order at most nlog2 n.

There obviously is a function f such that if G is an integrable
group of order n, then G has an integral of order at most f (n).

If we had a good estimate for f (n), we could find all groups of
order up to f (n) and divisible by n and check whether their derived
groups are isomorphic to G .
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Some more things we do not know

1. For which finite non-abelian groups G is it true that, for all
finite groups H with G ′ = H ′, it holds that H is integrable if
and only if G is? (All finite abelian groups have this property,
but it fails for D8 and Q8.)

2. Which infinite integrable groups G have an integral H such
that |H : G | is finite?

3. Is it true that, given a presentation for a group G , the
problem of deciding whether G is integrable is undecidable?
Are there classes of groups (maybe one-relator groups) for
which this problem is decidable?

4. Does there exist a finite non-integrable group G for which
G × G is integrable?
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Infinite groups

Proposition

Let G be finitely generated. If G has an integral, then it has a
finitely generated integral.

Theorem
Any free group is integrable.

Remark
The free product of integrable groups may or may not be
integrable. For example,

I C2 ∗ C2 is the infinite dihedral group, which is not integrable
(by the same argument as for finite dihedral groups).

I C3 ∗ C3 is the derived group of PGL(2,Z).
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Inverse group theory

The material just discussed can be regarded as part of inverse
group theory. Given a construction F on groups, decide for which
groups G there exists a group H such that F(H) = G .

There are many group-theoretic constructions other than derived
group: center, central quotient, derived quotient, Frattini
subgroup, Fitting subgroup, Schur multiplier, other cohomology
groups, and various constructions from permutation groups.

Many of these problems are trivial, and others have been “solved”
(though open questions remain), but a number of interesting and
challenging questions are still unsolved.
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Inverse group theory

We consider an inverse problem arising from a construction F to
be trivial if

G = F(H) =⇒ G = F(G ).

Example

1. The center of any group is abelian; but an abelian group is its
own center.

2. The Fitting subgroup of any group is nilpotent; but a
nilpotent group is its own Fitting subgroup.

3. The derived quotient of any group is abelian; but an abelian
group is its own derived quotient.
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Frattini subgroup

The Frattini subgroup Φ(G ) of a finite group G is a nilpotent
subgroup that can be defined in several ways. For example,

1. it is the intersection of the maximal subgroups of G ;

2. it is the set of non-generators of G , elements which can be
dropped from any generating set.

Problem
Which nilpotent groups are Frattini subgroups of finite groups?

Theorem (Eick, 1997)

The finite group G is the Frattini subgroup of a finite group H if
and only if Inn(G ) is contained in the Frattini subgroup of Aut(G ).
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Schur multipliers

The Schur multiplier M(G ) of a finite group G is

1. isomorphic to (R ∩ F ′)/[F ,R] if G ∼= F/R is a presentation
for G , for some free group F and a normal subgroup R

2. the second cohomology group H2(G ,C∗).

Theorem
Every abelian group is the Schur multiplier of a group.

Remark
Cp × Cp is not the Schur multiplier of a p-group.

Question
Which abelian p-groups occur as Schur multipliers of p-groups?
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