Groups with many self-centralizing or self-normalizing subgroups

Chiara Nicotera

Cremona, 12 giugno 2019

References

- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera, Groups in which every non-cyclic subgroup contains its centralizer, J. Algebra Appl., 13 no.5 (2014).
- C. Delizia, H. Dietrich, P. Moravec and C. Nicotera, Groups in which every non-abelian subgroup is self-centralizing, J. Algebra, 462 (2016) 23-36.
- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera and C.Parker, *Locally finite groups in which every non-cyclic subgroups is self-centralizing*, J. Pure Appl. Algebra, **221** no.2 (2017) 401-410.
- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera, *Groups in which every non-abelian subgroup is self-normalizing*, Monatsh. Math., **185** (2018) 591-600.
- C. Delizia, U. Jezernik, P. Moravec, C. Nicotera, Groups in which every non-nilpotent subgroup is self-normalizing, Ars Math. Contemp., 15 no.1 (2018) 39-51.

Let *H* be a subgroup of a group *G*

- $C_G(H) = \{g \in G | gh = hg \ \forall h \in H\}$ centralizer of H in G
- $N_G(H) = \{g \in G | H^g = H\}$ normalizer of H in G

Of course $C_G(H) \subseteq N_G(H), H \subseteq N_G(H)$

Definition

A subgroup *H* of a group *G* is **self-centralizing** if $C_G(H) \subseteq H$

A non-abelian group G has always proper self-centralizing subgroups

The subgroup $\{1\}$ is self-centralizing iff $G = \{1\}$

The following subgroups of a group G are self-centralizing:

- maximal abelian subgroups
- the Fitting subgroup F(G) of a soluble group
- the generalized Fitting subgroup $F^*(G)$ of a group G

Definition

A subgroup *H* of a group *G* is **self-normalizing** if $N_G(H) = H$

If H is self-normalizing, then it is self-centralizing since $C_G(H) \subseteq N_G(H)$

Remark

Every self-normalizing subgroup is self- centralizing. For a finite group G, the converse holds if and only if G is abelian (M. Hassanzadeh, Z. Mostaghim 2018)

The following subgroups of a finite group G are self-normalizing:

- the normalizer $N_G(P)$ of any p-Sylow subgroup
- Carter subgroups
- the complement of any Frobenius group

Let $\mathfrak X$ be a class of groups and consider

- $\mathfrak{C}_{\mathfrak{X}}$ groups in which every non- \mathfrak{X} subgroup is self-centralizing
- $\mathfrak{N}_{\mathfrak{X}}$ groups in which every non- \mathfrak{X} subgroup is self-normalizing

of course $\mathfrak{N}_{\mathfrak{X}} \subseteq \mathfrak{C}_{\mathfrak{X}}$

The "smallest" class

If $G \in \mathfrak{N}_{tr}$ is a group in which every non-trivial subgroup is self-normalizing, then

- $G \in \mathfrak{N}_{\mathfrak{X}}$ for every \mathfrak{X} class of groups.
- G ∈ 𝔅_{tr} is a group in which every non-trivial subgroup is self-centralizing, then G ∈ 𝔅_𝔅 for every 𝔅 class of groups.

Every Tarski p-group lies in the class \mathfrak{N}_{tr} and so such groups belong to each class $\mathfrak{N}_{\mathfrak{X}}, \mathfrak{C}_{\mathfrak{X}}$.

Notice

We restrict our investigation to locally graded groups

The classes \mathfrak{C}_{tr} and \mathfrak{N}_{tr}

Groups in which every **non-trivial** subgroup is self-centralizing, groups in which every **non-trivial** subgroup is self-normalizing

Remark

 $\mathfrak{N}_{\textit{tr}} \subset \mathfrak{C}_{\textit{tr}}$ the inclusion is proper: $S_3 \in \mathfrak{C}_{\textit{tr}} \setminus \mathfrak{N}_{\textit{tr}}$

Theorem

Let G be a locally graded \mathfrak{C}_{tr} -group. Then G is finite.

Theorem

A finite group G lies in the class \mathfrak{C}_{tr} iff one of the following holds:

$$\bigcirc G \cong C_{\rho}$$

G is non-abelian of order pq where p
eq q are primes

Corollary

A locally graded group G lies in the class \mathfrak{N}_{tr} iff $G \cong C_p$.

The classes \mathfrak{C}_c and \mathfrak{N}_c

Groups in which every **non-cyclic** subgroup is self-centralizing, groups in which every **non-cyclic** subgroup is self-normalizing

Remark

 $\mathfrak{N}_c \subset \mathfrak{C}_c$ the inclusion is proper: $D_8 \in \mathfrak{C}_c \setminus \mathfrak{N}_c$

Every cyclic group lies in the class \mathfrak{C}_c

 $\mathfrak{C}_{\mathit{tr}} \subset \mathfrak{C}_{\mathit{c}}$

Theorem

Classification of all finite groups in the class \mathfrak{C}_c

Groups in which every **non-cyclic** subgroup is self-centralizing

The classification of all finite groups in the class \mathfrak{C}_c	1/5
Let G be a finite \mathfrak{C}_c -group. Then one of the following holds:	
(1) If G is nilpotent, then either	
 (1.1) G is cyclic; (1.2) G is elementary abelian of order p² for some prime p; (1.3) G is an extraspecial p-group of order p³ for some odd prime p; (1.4) G is a dihedral, semidihedral or quaternion 2-group. 	or

Groups in which every non-cyclic subgroup is self-centralizing

The classification of all finite groups in the class \mathfrak{C}_c

- (2) If *G* is supersoluble but not nilpotent, then, letting *p* denote the largest prime divisor of |G| and $P \in Syl_p(G)$, we have that *P* is a normal subgroup of *G* and one of the following holds:
 - (2.1) P is cyclic and either
 - (2.1.1) $G = C \rtimes D$, where C is cyclic, D is cyclic and D acts fixed point freely on C (so G is a Frobenius group);
 - (2.1.2) $G = C \rtimes D$, where *C* is a cyclic group of odd order, *D* is a quaternion group, and $C_G(C) = C \times D_0$ where D_0 is a cyclic subgroup of index 2 in *D*; or
 - (2.1.3) G = C ⋊ D, where D is a cyclic q-group, C is a cyclic q'-group (here q denotes the smallest prime dividing the order of G) and 1 < Z(G) < D;</p>
 - (2.2) *P* is extraspecial and *G* is a Frobenius group with cyclic Frobenius complement of odd order dividing p 1.

2/5

Groups in which every non-cyclic subgroup is self-centralizing

The classification of all finite groups in the class \mathfrak{C}_c

(3) If G is not supersoluble and F*(G) is elementary abelian of order p², then F*(G) is a minimal normal subgroup of G and one of the following holds:

3/5

- (3.1) $G \cong \text{Sym}(4)$ or $G \cong \text{Alt}(4)$; or
- (3.2) *p* is odd and $G = N \rtimes G_0$ is a Frobenius group with Frobenius kernel *N* and Frobenius complement G_0 . Furthermore, either
 - (3.2.1) G_0 is cyclic of order dividing $p^2 1$ but not dividing p 1;
 - (3.2.2) G₀ is quaternion;
 - (3.2.3) G_0 is supersoluble as in (2.1.2) with |C| dividing $p \epsilon$ if $p \equiv \epsilon$ (mod 4);
 - (3.2.4) G_0 is supersoluble as in (2.1.3) with D a 2-group, $C_D(C)$ a non-trivial maximal subgroup of D and |C| odd dividing $p^2 1$;
 - (3.2.5) $G_0 \cong SL_2(3);$
 - (3.2.6) $G_0 \cong SL_2(3)$ 2 if $p \equiv \pm 1 \pmod{8}$; or
 - (3.2.7) $G_0 \cong SL_2(5)$ if 60 divides $p^2 1$.

Groups in which every non-cyclic subgroup is self-centralizing

The classification of all finite groups in the class \mathfrak{C}_c

- (4) If G is not supersoluble and F*(G) is extraspecial of order p³, then one of the following holds:
 - (4.1) $G \cong SL_2(3)$ or $G \cong SL_2(3) \cdot 2$ (with quaternion Sylow 2-subgroups of order 16); or
 - (4.2) G = N ⋊ K where N is extraspecial of order p³ and exponent p with p an odd prime, K centralizes Z(N) and is cyclic of odd order dividing p + 1. Furthermore, G/Z(N) is a Frobenius group.

4/5

Groups in which every non-cyclic subgroup is self-centralizing

The classification of all finite groups in the class ℭ_c
5/5
(5) If F*(G) is not nilpotent, then either
(5.1) F*(G) ≅ SL₂(p) where p is a Fermat prime, |G/F*(G)| ≤ 2 and G has quaternion Sylow 2-subgroups; or
(5.2) G ≅ PSL₂(9), Mat(10) or PSL₂(p) where p is a Fermat or Mersenne prime.
Furthermore, all the groups listed above are ℭ_c-groups.

Groups in which every non-cyclic subgroup is self-centralizing

Theorem

- An infinite abelian group lies in \mathfrak{C}_c iff it is either cyclic or isomorphic to $\mathbb{Z}_{p^{\infty}}$ for some prime p.
- Every infinite nilpotent group in the class \mathfrak{C}_c is abelian.
- An infinite polycyclic group lies in C_c if and only if it is either cyclic or dihedral.

Groups in which every non-cyclic subgroup is self-centralizing

Theorem

Let G be an infinite soluble group. Then G is a \mathfrak{C}_c -group if and only if one of the following holds:

- G is cyclic;
- ② G is dihedral;
- 3 $G \cong \mathbb{Z}_{p^{\infty}}$ for some prime p;
- 3 $G = A\langle y \rangle$ where $A \cong \mathbb{Z}_{2^{\infty}}$ and $\langle y \rangle$ has order 2 or 4, with $y^2 \in A$ and $a^y = a^{-1}$, for all $a \in A$;
- **6** $G \cong A \rtimes D$, where $A \cong \mathbb{Z}_{p^{\infty}}$ and $\{1\} \neq D \leq C_{p-1}$ for some odd prime p.

Infinite locally finite \mathfrak{C}_c -groups are precisely groups in 3-4-5 above

Infinite locally nilpotent \mathfrak{C}_c -groups are precisely groups in 1 - 3 - 4 above

Groups in which every **non-cyclic** subgroup is self-centralizing **Residually finite** \mathfrak{C}_c -groups

- Free groups are examples of torsion-free residually finite \mathfrak{C}_c -groups
- D_∞ is an example of of infinite residually finite C_c-group having periodic elements
- Do exist infinite periodic residually finite C_c-groups?

C. Delizia, C.N. 2019

Let *G* be an infinite perodic, residually finite \mathfrak{C}_c -group. Then:

- the centralizer $C_G(a)$ is finite for all $1 \neq a \in G$;
- every non trivial normal subgroup of G is infinite;
- the centre $Z(G) = \{1\};$
- the Fitting subgroup $F(G) = \{1\};$
- if *H* is an infinte subgroup of *G*, then $C_G(H) = \{1\}$;
- G has no element of order 2.

Groups in which every non-cyclic subgroup is self-normalizing

Theorem (C. Delizia, C.N. 2019)

A finite group G lies in the class \mathfrak{N}_c if and only if one of the following holds:

- G is cyclic ;
- $G \cong C_p \times C_p$
- $G \cong Q_8;$
- G is a Frobenius group with cyclic kernel of odd order and complement of prime order;

 G ≅ D ⋉ C, where D is a cyclic q-group (q being the smallest prime dividing the order of G), C is a cyclic q'-group, {1} < Z(G) < D, | ^D/_{Z(G)}| = q and ^G/_{Z(G)} is a Frobenius group.

Theorem (C. Delizia, C.N. 2019)

Every infinite locally graded \mathfrak{N}_c -group is abelian.

The classes \mathfrak{C}_{ab} and \mathfrak{N}_{ab}

Groups in which every **non-abelian** subgroup is self-centralizing, groups in which every **non-abelian** subgroup is self-normalizing

Remark

 $\mathfrak{N}_{ab}\subset\mathfrak{C}_{ab}$ the inclusion is proper: $S_4\in\mathfrak{C}_{ab}\setminus\mathfrak{N}_{ab}$

The class \mathfrak{C}_{ab}

Groups in which every non-abelian subgroup is self-centralizing

Every abelian group lies in the class Cab

 $\mathfrak{C}_{tr} \subset \mathfrak{C}_c \subset \mathfrak{C}_{ab}$ the wreath product $C_3 \wr C_3 \in \mathfrak{C}_{ab}$ but $C_3 \wr C_3 \notin \mathfrak{C}_c$

The class Cab also contains:

- minimal non-abelian groups (non-abelian groups in which every proper subgroup is abelian)
- commutative-transitive groups (groups in which the centralizer of each non-trivial element is abelian)

Groups in which every non-abelian subgroup is self-centralizing

Theorem

Every nilpotent \mathfrak{C}_{ab} -group G is either abelian or a finite p-group.

Open Problem (Y. Berkovich, 2008)

Determine all finite *p*-groups lying in the class \mathfrak{C}_{ab}

Theorem

Every finite metacyclic p-group lies in the class \mathfrak{C}_{ab}

Theorem

Let G be a p-group of maximal class having order p^n .

) If
$$p \in \{2,3\}$$
 or $n \leq 3$, then $G \in \mathfrak{C}_{ab}$;

If p ≥ 5 and n ≥ 4, then G is a C_{ab}-group if and only if C_G(γ₂(G)/γ₄(G)) is abelian.

Groups in which every non-abelian subgroup is self-centralizing

Theorem

Let $G \in \mathfrak{C}_{ab}$ be a finite p-group of exponent p. If $|G| > p^p$, then G is elementary abelian. Otherwise, either G is elementary abelian or G has maximal class and an elementary abelian subgroup of index p.

Theorem

Let G be an infinite supersoluble group.

- If G has no elements of even order and it is a c_{ab}-group, then G is abelian.
- If G is not abelian, then G is a \mathfrak{C}_{ab} -group if and only if $G = A\langle x \rangle$ where A is abelian, $a^x = a^{-1}$ for all $a \in A$, $|x| = 2^n$, $A = \langle a_1 \rangle \times \cdots \times \langle a_t \rangle \times \langle d \rangle$, a_i of infinite or odd order for all $i \in \{1, \ldots, t\}$, $|d| = 2^h$, $d^{2^{h-1}} = x^{2^{n-1}}$ if h > 0.

The class \mathfrak{N}_{ab}

Groups in which every non-abelian subgroup is self-normalizing

Minimal non-abelian groups lie in the class \mathfrak{N}_{ab}

 $\mathfrak{N}_{tr} \subset \mathfrak{N}_c \subset \mathfrak{N}_{ab}$ the elementary abelian 2-group $C_2 \times C_2 \times C_2 \in \mathfrak{N}_{ab} \setminus \mathfrak{N}_c$

Theorem

Every nilpotent \mathfrak{N}_{ab} -group is either abelian or a finite minimal non-abelian p-group for some prime p.

The class \mathfrak{N}_{ab}

Groups in which every non-abelian subgroup is self-normalizing

Proposition

Let $G \in \mathfrak{N}_{ab}$ be a finite group; then G is either soluble or simple.

Theorem

Let G be a finite group.

- If G is a non-abelian simple group, then $G \in \mathfrak{N}_{ab}$ iff $G \simeq Alt(5)$ or $G \simeq PSL_2(2^{2n+1})$, $n \ge 1$.
- If G is a soluble non-nilpotent group, then G ∈ 𝔅_{ab} iff G = A ⋊ ⟨x⟩, where ⟨x⟩ is a p-group for some prime p, A is an abelian p'-group, x^p is central and x acts fixed point freely on A.
- If G is a nilpotent group, then G ∈ 𝔅_{ab} iff G is either abelian or minimal non-abelian p-group for some prime p

The class \mathfrak{N}_{ab}

Groups in which every non-abelian subgroup is self-normalizing

Theorem

Let $G \in \mathfrak{N}_{ab}$ if G is non-periodic and soluble, then G is abelian.

Theorem

Let G be an infinite periodic group and suppose that G is soluble and dl(G) > 1. Then $G \in \mathfrak{N}_{ab}$ iff $G = \langle x \rangle \ltimes G'$, where x is an element of prime power order p^n , $x^p \in C_G(G')$ and G' is an abelian group with no elements of order p.

Theorem

If G is a locally finite \mathfrak{N}_{ab} -group, then it is either finite or soluble.

The class $\mathfrak{N}_{\textit{nil}}$

Groups in which every non-nilpotent subgroup is self-normalizing

Nilpotent groups belong to $\mathfrak{N}_{\text{nil}}$ and minimal non-nilpotent groups lie in the class $\mathfrak{N}_{\text{nil}}$

$$\begin{split} \mathfrak{N}_{\textit{tr}} \subset \mathfrak{N}_{\textit{c}} \subset \mathfrak{N}_{\textit{ab}} \subset \mathfrak{N}_{\textit{nil}}, \textit{ also the last inclusion is proper since } \\ SL_2(5) \in \mathfrak{N}_{\textit{nil}} \setminus \mathfrak{N}_{\textit{ab}} \end{split}$$

Remark

Let G be a \mathfrak{N}_{nil} -group; then

- either G = G'
- or G' is nilpotent (and so G is soluble)

Soluble $\mathfrak{N}_{\textit{nil}}$ -groups

Soluble groups in which every non-nilpotent subgroup is self-normalizing

Theorem

Let G be a soluble non-periodic group; then G is a \mathfrak{N}_{nil} -group iff G is nilpotent

Theorem

Let G be a periodic soluble group, and suppose G is not locally nilpotent; then G is a \mathfrak{N}_{nil} -group iff

- G = H × (x), where (x) is a p-group for some prime p, H is a nilpotent p'-group and x^p acts trivially on H;
- put ρ_x : h ∈ H → h^{-x}h ∈ H, for every ⟨x⟩-invariant subgroup K of H either there exists n ≥ 1 such that ρⁿ_x(K) = 1, or ⟨ρ_x(K)⟩ = K.

Theorem

Let G be a soluble, locally nilpotent group; then G is a \mathfrak{N}_{nil} -group iff either it is nilpotent or it is minimal non-nilpotent and it is a p-group for some prime p.

Perfect \mathfrak{N}_{nil} -groups

Perfect groups in which every non-nilpotent subgroup is self-normalizing

Theorem

Let G be a finite perfect group; then G is a \mathfrak{N}_{nil} -group iff

• either $G \simeq PSL_2(2^n)$, where $2^n - 1$ is a prime

or G ≃ SL₂(5)

Lemma

If G is a perfect \mathfrak{N}_{nil} -group and F := F(G) is its Fitting subgroup, then G/F is a non-abelian simple group.

