Engel elements in groups of automorphisms of rooted trees

(joint with Fernández-Alcober, Garreta, Tortora, and Tracey)

University of Salerno - University of the Basque Country

June 2019 - Cremona SandGAL 2019

1 Engel elements

- 2 Automorphisms of a *d*-adic rooted tree
- 3 The case of fractal groups
- 4 The case of (weakly) branch groups
- 5 Conclusion and remarks

 Let G be a group. We say that g ∈ G is a left Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.

- Let G be a group. We say that g ∈ G is a *left Engel element* if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.
- If *n* can be chosen independently of *x*, then *g* is a *bounded left Engel element*.

- Let G be a group. We say that g ∈ G is a *left Engel element* if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.
- If *n* can be chosen independently of *x*, then *g* is a *bounded left Engel element*.
- Notation:
 - $L(G) = \{ \text{left Engel elements of } G \}$
 - $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$

- Let G be a group. We say that g ∈ G is a *left Engel element* if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.
- If *n* can be chosen independently of *x*, then *g* is a *bounded left Engel element*.
- Notation:
 - $L(G) = \{ \text{left Engel elements of } G \}$
 - $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- Similar considerations for right Engel elements.

- Let G be a group. We say that g ∈ G is a *left Engel element* if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.
- If *n* can be chosen independently of *x*, then *g* is a *bounded left Engel element*.
- Notation:
 - $L(G) = \{ \text{left Engel elements of } G \}$
 - $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$

- Let G be a group. We say that g ∈ G is a *left Engel element* if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [x, g, .ⁿ., g] = 1.
- If *n* can be chosen independently of *x*, then *g* is a *bounded left Engel element*.
- Notation:
 - $L(G) = \{ \text{left Engel elements of } G \}$
 - $\overline{L}(G) = \{ \text{bounded left Engel elements of } G \}$
- Similar considerations for right Engel elements. We have the sets R(G) and $\overline{R}(G)$.
- If L(G) = G or R(G) = G, then G is an Engel group.

An Engel version of the Burnside problem

An Engel version of the Burnside problem

Golod-Shafarevich groups

Question 1: if G is Engel, is G locally nilpotent? (Burnside, 1902)

Question 1: if G is Engel, is G locally nilpotent? (Burnside, 1902)

• Positive: finite groups (Zorn, 1936), solvable groups (Gruenberg, 1959), compact groups (Medvedev, 2003), and many others ...

Question 1: if G is Engel, is G locally nilpotent? (Burnside, 1902)

- Positive: finite groups (Zorn, 1936), solvable groups (Gruenberg, 1959), compact groups (Medvedev, 2003), and many others ...
- Negative: some Golod-Shafarevich groups (1964).

Question 1: if G is Engel, is G locally nilpotent? (Burnside, 1902)

- Positive: finite groups (Zorn, 1936), solvable groups (Gruenberg, 1959), compact groups (Medvedev, 2003), and many others ...
- Negative: some Golod-Shafarevich groups (1964).

Does any subgroup of Aut T_d solve also the Engel Burnside problem?

Question 2: are $L(G), \overline{L}(G), \ldots$ subgroups of a given group G?

Question 2: are $L(G), \overline{L}(G), \ldots$ subgroups of a given group G?

For L(G):

• Negative: the first Grigorchuk group (Bartholdi, 2016).

Question 2: are $L(G), \overline{L}(G), \ldots$ subgroups of a given group G?

For L(G):

• Negative: the first Grigorchuk group (Bartholdi, 2016). For $\bar{L}(G), R(G), \bar{R}(G)$:

• Open.

1 Engel elements

2 Automorphisms of a *d*-adic rooted tree

- 3 The case of fractal groups
- 4 The case of (weakly) branch groups
- 5 Conclusion and remarks

Automorphisms of a *d*-adic tree

Automorphisms of a *d*-adic tree

• Automorphisms of \mathcal{T}_d : bijections of the vertices that preserve incidence. The set Aut \mathcal{T}_d of all automorphisms of \mathcal{T}_d is a group with respect to composition between functions.

The stabilizer of Aut \mathcal{T}_d

• The *n*th level stabilizer st(n) fixes all vertices up to level *n*.

The stabilizer of Aut \mathcal{T}_d

- The *n*th level stabilizer st(n) fixes all vertices up to level *n*.
- If $H \leq \operatorname{Aut} \mathcal{T}$, we define $\operatorname{st}_H(n) = H \cap \operatorname{st}(n)$.

Elements of Aut \mathcal{T}_d

• Note Aut $\mathcal{T}_d = \operatorname{st}(1) \rtimes S_d$.

- Note Aut $\mathcal{T}_d = \operatorname{st}(1) \rtimes S_d$.
- We consider the isomorphism $\psi : \mathsf{st}(1) \longrightarrow \operatorname{Aut} \mathcal{T}_d \times \overset{d}{\cdots} \times \operatorname{Aut} \mathcal{T}_d.$

• Note Aut $\mathcal{T}_d = \operatorname{st}(1) \rtimes S_d$.

• We consider the isomorphism $\psi : \operatorname{st}(1) \longrightarrow \operatorname{Aut} \mathcal{T}_d \times \overset{d}{\cdots} \times \operatorname{Aut} \mathcal{T}_d$. Then

$$\operatorname{Aut} \mathcal{T}_d = \operatorname{st}(1) \rtimes S_d \cong (\operatorname{Aut} \mathcal{T}_d \times \stackrel{d}{\cdots} \times \operatorname{Aut} \mathcal{T}_d) \rtimes S_d$$
$$\cong \operatorname{Aut} \mathcal{T}_d \wr S_d \cong ((\cdots \wr S_d) \wr S_d) \wr S_d.$$

• Note Aut $\mathcal{T}_d = \operatorname{st}(1) \rtimes S_d$.

• We consider the isomorphism $\psi : \operatorname{st}(1) \longrightarrow \operatorname{Aut} \mathcal{T}_d \times \overset{d}{\cdots} \times \operatorname{Aut} \mathcal{T}_d$. Then

$$\operatorname{Aut} \mathcal{T}_d = \operatorname{st}(1) \rtimes S_d \cong (\operatorname{Aut} \mathcal{T}_d \times \stackrel{d}{\cdots} \times \operatorname{Aut} \mathcal{T}_d) \rtimes S_d$$
$$\cong \operatorname{Aut} \mathcal{T}_d \wr S_d \cong ((\cdots \wr S_d) \wr S_d) \wr S_d.$$

Examples.

A famous example: the Grigorchuk group

$$\Gamma = \langle a, b, c, d \rangle$$

$$\Gamma = \langle a, b, c, d \rangle$$

$$a=(12),\ b=(a,c)arepsilon,\ c=(a,d)arepsilon,\ d=(1,b)arepsilon$$

$$\Gamma = \langle a, b, c, d \rangle$$

$$a = (12), b = (a, c)\varepsilon, c = (a, d)\varepsilon, d = (1, b)\varepsilon$$

$$\Gamma = \langle a, b, c, d \rangle$$

$$a=(12)$$
, $b=(a,c)arepsilon$, $c=(a,d)arepsilon$, $d=(1,b)arepsilon$

$$\Gamma = \langle a, b, c, d \rangle$$

$$a=(12)$$
, $b=(a,c)arepsilon$, $c=(a,d)arepsilon$, $d=(1,b)arepsilon$

What is known about Engel elements in subgroups of Aut \mathcal{T} : the case of the Grigorchuk group Γ

What is known about Engel elements in subgroups of Aut \mathcal{T} : the case of the Grigorchuk group Γ

• Let $H = \Gamma \wr D_8$. Then L(H) is not a subgroup. (Bludov, 2006)

What is known about Engel elements in subgroups of Aut \mathcal{T} : the case of the Grigorchuk group Γ

- Let $H = \Gamma \wr D_8$. Then L(H) is not a subgroup. (Bludov, 2006)
- L(Γ) = {x ∈ Γ | x² = 1}. In particular, Γ is not an Engel group. (Bartholdi, 2016)
What is known about Engel elements in subgroups of Aut \mathcal{T} : the case of the Grigorchuk group Γ

- Let $H = \Gamma \wr D_8$. Then L(H) is not a subgroup. (Bludov, 2006)
- L(Γ) = {x ∈ Γ | x² = 1}. In particular, Γ is not an Engel group. (Bartholdi, 2016)

Moreover:

Theorem (–, Tortora, 2018)

$$\bar{L}(\Gamma) = R(\Gamma) = \bar{R}(\Gamma) = 1$$

Engel elements

2 Automorphisms of a *d*-adic rooted tree

The case of fractal groups

4 The case of (weakly) branch groups

5 Conclusion and remarks

Fractal groups

Fractal groups!?

Fractal groups!?

Proposition (Fernández-Alcober, Garreta, —, 2018)

Let $G \leq \operatorname{Aut} \mathcal{T}$ be a fractal group such that $L(G) \subseteq \operatorname{st}_G(1)$. Then L(G) = 1.

Proposition (Fernández-Alcober, Garreta, —, 2018)

Let $G \leq \operatorname{Aut} \mathcal{T}$ be a fractal group such that $L(G) \subseteq \operatorname{st}_G(1)$. Then L(G) = 1.

Idea of the proof:

- Step 1: $L(G) \cap \operatorname{st}_G(1) = \{h \in \operatorname{st}_G(1) \mid \psi(h) \in L(G) \times ... \times L(G)\}.$
- Step 2: if $S \subseteq st(1)$ and $\psi(S) \subseteq S \times . . . \times S$, then S = 1.

Theorem (Fernández-Alcober, Garreta, —, 2018)

Let G be a fractal group such that $|G' : st_G(1)'| = \infty$. Then L(G) = 1.

Theorem (Fernández-Alcober, Garreta, —, 2018)

Let G be a fractal group such that $|G' : st_G(1)'| = \infty$. Then L(G) = 1.

Moreover:

Theorem (Fernández-Alcober, Garreta, —, 2018)

Let G be a fractal group with torsion-free abelianization. Then L(G) = 1.

Some examples:

- The Basilica group;
- The Brunner Sidki Vieira group;
- The GGS group $\mathcal G$ with constant defining vector.

Engel elements

- Automorphisms of a *d*-adic rooted tree
- 3 The case of fractal groups
- The case of (weakly) branch groups

5 Conclusion and remarks

Branch groups

Given $G \leq \operatorname{Aut} \mathcal{T}$, can we find for every $n \in \mathbb{N}$ a subgroup of $\operatorname{st}_G(n)$ which is a direct product?

Branch groups

Given $G \leq Aut \mathcal{T}$, can we find for every $n \in \mathbb{N}$ a subgroup of $st_G(n)$ which is a direct product?

The *rigid stabilizer* of the vertex *u* is

 $\operatorname{rst}_G(u) = \{g \in G : g \text{ fixes all vertices outside } \mathcal{T}_u\}$

Branch groups

Given $G \leq Aut \mathcal{T}$, can we find for every $n \in \mathbb{N}$ a subgroup of $st_G(n)$ which is a direct product?

The *rigid stabilizer* of the vertex *u* is

 $\operatorname{rst}_G(u) = \{g \in G : g \text{ fixes all vertices outside } \mathcal{T}_u\}$

The rigid stabilizer of the nth level is

$$\operatorname{rst}_G(n) = \prod_{u \in X^n} \operatorname{rst}_G(u).$$

 We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite.
- We say that G is a *weakly branch group* if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite.
- We say that G is a *weakly branch group* if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \implies Weakly branch.

L(G) in branch groups

Let G be a branch group. Then $\overline{I}(G)$

• $\bar{L}(G) = 1.$

- $\bar{L}(G) = 1.$
- If G contains an element of infinite order, then L(G) = 1.

- $\bar{L}(G) = 1.$
- If G contains an element of infinite order, then L(G) = 1.
- If G is periodic, then L(G) is a p-set for some prime p = p(G).

- $\bar{L}(G) = 1.$
- If G contains an element of infinite order, then L(G) = 1.
- If G is periodic, then L(G) is a p-set for some prime p = p(G).
- If $L(G) \neq 1$, then G is virtually a p-group.

• Aut \mathcal{T}_d ;

- Aut \mathcal{T}_d ;
- Finitary automorphisms;
- Multi-edge spinal groups;
- Hanoi towers group.

Let G be a weakly branch group acting on \mathcal{T} . If $rst_G(n)$ is not Engel for any n, then R(G) = 1.

Let G be a weakly branch group acting on \mathcal{T} . If $rst_G(n)$ is not Engel for any n, then R(G) = 1.

Moreover:

Conjecture

Let G be a finitely generated weakly branch group. Then R(G) = 1.

Engel elements

- 2 Automorphisms of a *d*-adic rooted tree
- 3 The case of fractal groups
- 4 The case of (weakly) branch groups

5 Conclusion and remarks

L(G) = 1 completes the description of Engel elements in G: • R(G) = 1; • $\overline{L}(G) = 1$. (Because $R^{-1}(G), \overline{L}(G) \subseteq L(G)$) L(G) = 1 completes the description of Engel elements in G:
R(G) = 1;
L
(G) = 1.
(Because R⁻¹(G), L
(G) ⊆ L(G))

Non solvable fractal/weakly branch groups have few Engel elements.

L(G) = 1 completes the description of Engel elements in G: • R(G) = 1; • $\overline{L}(G) = 1$. (Because $R^{-1}(G), \overline{L}(G) \subseteq L(G)$)

Non solvable fractal/weakly branch groups have few Engel elements.

Golod-Shafarevich groups cannot be branch.
Can a finitely generated branch group be Engel?

Can a finitely generated branch group be Engel?

Some possible approaches:

Can a finitely generated branch group be Engel?

Some possible approaches:

- Determine this "*p*-set" of left Engel elements.
- Reduce to the periodic case and prove that rigid stabilizers are not Engel.
- Prove that branch Lie algebras are not Engel.

Grazie! Eskerrik asko :)