Factorization Theorems

for Finite Groups of Characteristic p

SandGAL 2019

Cremona June 10 – 13, 2019

Gemma Parmeggiani (University of Padova)

joint work with

Ulrich Meierfrankenfeld (Michigan State University)

and

Bernd Stellmacher (University of Kiel)

Introduction

Definition: A finite group G is of characteristic p if $C_G(O_p(G)) \leq O_p(G)$.

Glauberman's ZJ-Theorem (1968): Let G be a finite group of characteristic p and $S \in Syl_p(G)$. Suppose $p \neq 2$ and G is p-stable. Then $Z(J(S)) \leq G$

If the stability condition is dropped

Basic counterexamples: $q^2SL_2(q)$

[Target: study the "counterexamples"]

Notation]

G is a finite group, p a prime divisor of |G| and $S \in Syl_p(G)$.

$$\mathbb{Z}(\mathsf{T}) := \Omega_1(Z(T))$$
 for all $T \leq S$

 $\mathbf{C} := C_G(\mathbb{Z}(S))$

$$\mathsf{B}_{\mathsf{S}} := C_{O_p(C)}(\mathbb{Z}(J(O_p(C))))$$

$$\mathsf{Bau}_{\mathsf{p}}(\mathsf{G}) := \{B_{S}^{g} \,|\, g \in G\}$$

Baumann component: Let G be a finite group of characteristic p and $B \in Bau_p(G)$. Then E is a Baumann component of G if E is minimal subject to

$$E \trianglelefteq \trianglelefteq G$$
 and $E \not\leq N_G(B)$.

 $\mathcal{E}(G) :=$ the set of the Baumann components of G

Plan: Let B be a finite p-group and let W be a non-trivial characteristic subgroup of B.

The best would be:

(*) $W \leq G$ for all finite groups G of characteristic p with $B \in Bau_p(G)$.

This is impossible.

Best hope: describe all counterxamples to (*).

More precisely, give the isomorphism types of all Baumann components of G not normalizing W.

And that is what we intend to do and what I mean by a counterexample.

In this talk I will describe general factorization theorems which allow to narrow down the structure of such counterexamples, and where one does not need to specify which characteristic subgroup W one actually want to use.

Theorem A:

Let G be a finite CK-group of characteristic p and $B \in Bau_p(G)$. Then

(a)
$$G = \langle \mathcal{E}(G) \rangle N_G(B) = \langle Bau_p(G) \rangle N_G(B)$$

(b) $B \leq G \iff \mathcal{E}(G) = \emptyset$

Hence if $W \neq 1$ is characteristic in B then (a) $\Rightarrow [W \trianglelefteq G \iff W \trianglelefteq \langle Bau_p(G) \rangle]$ (b) $\Rightarrow [\mathcal{E}(G) = \emptyset \Rightarrow W \trianglelefteq G]$

In a "counterexample" we may assume that

 $G = \langle Bau_p(G) \rangle$ and $\mathcal{E}(G) \neq \emptyset$

C := C(B) := the class of finite $C\mathcal{K}$ -groups H of characteristic p with $B \in Bau_p(H)$ such that $H = \langle Bau_p(H) \rangle$ and $|\mathcal{E}(H)| = 1$

Theorem B:

Let G be a finite group of characteristic p with $\mathcal{E}(G) \neq \emptyset$. Let $B \in Bau_p(G)$ and $E \in \mathcal{E}(G)$. Put $F := \langle E, B \rangle$ and $\widehat{G} := G/O_p(G)$. Then $E \leq F$ and

(a) [Ê, L] = 1 and [Z(O_p(G)), E, L] = 1 for all L ∈ E (G) with L ≠ E.
(b) If G is a CK-group then F ∈ C.

Hence the isomorphism type of Baumann components can be studied in groups in \mathcal{C} .

 $\mathcal{D} := \mathcal{D}(B) :=$ class of $H \in \mathcal{C}$ such that for $T \in Syl_p(H)$ with $B := B_T$

$${\mathcal C}_{\widehat{\mathcal T}}(\widehat{B}) \leq \widehat{B}$$
 where $\widehat{H} := {\mathcal G}/{\mathcal O}_p(H)$

Theorem 1 (Baumann argument): Let B be a finite p-group and $G \in \mathcal{D}$. Then $O_p(G) \leq B$.

[Corollary. $W := \langle \mathbb{Z}(O_p(G_i)) | G_i \in \mathcal{D} \rangle \leq B$]

For a finite group G, set

$$\mathcal{D}_{G} := \mathcal{D}_{G}(B) := \{H \in \mathcal{D}(B) \mid H \leq G\}$$

Theorem 2:

Let B be a finite p-group and $G \in C$. Put $T := BO_p(G)$,

$$\mathbb{V} := [\mathbb{Z}(O_p(G)), G], \, \widetilde{\mathbb{V}} := \mathbb{V}/C_{\mathbb{V}}(G) \text{ and } \overline{G} := G/O_p(G)$$

Then
$$C_G(\mathbb{V}) = O_p(G)$$
 and $N_G(T) = N_G(B)$.

Moreover one of the following holds, where q is a power of p:

Case (1) $\mathcal{D}_{G} = \{G\}$ and (a) $\overline{G} \cong SL_{n}(q), n \ge 2, Sp_{2n}(q), n \ge 1 \text{ or } G_{2}(q) \text{ and } p = 2$ (b) $\widetilde{\mathbb{V}}$ is a natural module for \overline{G}

Case (2)
$$G \notin D$$
 and
(a) (i) $\overline{G} \cong Sp_{2n}(q), n \ge 2$, or
(ii) $\overline{G} \cong Sym(n), p = q = 2$ and $n \ge 7, n \equiv 2, 3 \pmod{4}$
(b) $G = \langle D_G \rangle O_p(G)$ and $N_G(B)$ acts transitively on D_G
(c) For all $L \in D_G$
(i) $\overline{L} \cong SL_2(q)$
(ii) $[\widetilde{\mathbb{V}}, L]$ is a natural module for \overline{L}
(iii) $\widetilde{\mathbb{V}} = [\widetilde{\mathbb{V}}, L] \times \widetilde{C_{\mathbb{V}}(L)}$ for all $L \in D_G$

Corollary 3:

Let B be a finite p-group and G a finite CK-group of characteristic p with $B \in Bau_p(G)$. Then

$$G = N_G(B) \langle \mathcal{D}_G \rangle.$$

Variations of Thompson and Baumann subgroups

Let T be a finite p-group and $A, B \leq T$.

A is an offender on B if $|B||C_A(B)| \le |A||C_B(A)|$.

Put

 $\mathcal{L}(T) :=$ the set of $A \leq T$ s.t. A is an offender on each $B \leq T$

 $\mathcal{O}(T) :=$ the set of the elementary abelian subgroups in $\mathcal{L}(T)$ of maximal order

 $J^{\diamond}(T) := \langle \mathcal{O}(T) \rangle$ and $B^{\diamond}(T) := C_T(C_T(J^{\diamond}(T)))$

Theorem 4: Let B be a finite p-group and $G \in C$. Put

$$B^{\diamond} := B^{\diamond}(BO_p(G)) \text{ and } G^{\diamond} := \langle B^{\diamond G} \rangle.$$

Then one of the following holds:

Corollary 5:

Let B be a finite p-group and G a finite $C\mathcal{K}$ -group of characteristic p with $B \in Bau_p(G)$. Put $B^\diamond := B^\diamond(B)$.

Then

$$G = N_G(B^\diamond) \langle \mathcal{D}_G(B^\diamond) \rangle.$$