Decomposition and synchronization of finite codes

Dominique Perrin

LIGM, Université Paris-Est

Joint work with Andrew Ryzhikov 10 June 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Codes

A *word* over alphabet Σ is a finite sequence of elements (called *letters*) from Σ . Examples: *abba*, *abcda*.

Definition

A set *X* of words is called a *code* if no word can be represented as a concatenation of words in *X* in two different ways.

Examples: $\{a, aba\}$, ba^*a are codes. The set $\{ab, ba, aba\}$ is not: we have (aba)(ba) = (ab)(aba).

Codes

A *word* over alphabet Σ is a finite sequence of elements (called *letters*) from Σ . Examples: *abba*, *abcda*.

Definition

A set *X* of words is called a *code* if no word can be represented as a concatenation of words in *X* in two different ways.

Examples: $\{a, aba\}$, ba^*a are codes. The set $\{ab, ba, aba\}$ is not: we have (aba)(ba) = (ab)(aba).

Definition

A word *w* is called *synchronizing* for a code *X* if for any words *u*, *v* such that $uwv \in X^*$ we have $uw, wv \in X^*$. A code having a synchronizing word is also called *synchronizing*.

This means that once we see *ww* in the sequence of codewords, we can partition the decoding into two independent parts before the second *w* and after the first *w* regardless the context.

Example: the code $\{aa, ab, ba, bb\}$ is not synchronizing. Indeed, assume that there exists a synchronizing word *w* for it. Suppose that it's of even length. Then taking *u*, *v* of odd length implies $uwv \in X^*$, but uw, wv are of odd length and thus are not in X^* . The same for odd length.

Definition

A word *w* is called *synchronizing* for a code *X* if for any words *u*, *v* such that $uwv \in X^*$ we have $uw, wv \in X^*$. A code having a synchronizing word is also called *synchronizing*.

This means that once we see *ww* in the sequence of codewords, we can partition the decoding into two independent parts before the second *w* and after the first *w* regardless the context.

Example: the code $\{aa, ab, ba, bb\}$ is not synchronizing. Indeed, assume that there exists a synchronizing word *w* for it. Suppose that it's of even length. Then taking *u*, *v* of odd length implies $uwv \in X^*$, but uw, wv are of odd length and thus are not in X^* . The same for odd length.

Example: $\{a, aba\}$ is synchronizing. Example: Take the code $\{a, baab\}$.

> baab a a baab a a baab baab a ba a baab a a baab a a bbaaba ba abaabaabaa baab baab a

> > ▲□▶▲□▶▲□▶▲□▶ □ のQで

The word *baabbaab* is synchronizing: after reading it, only one interpretation is possible.

Example: $\{a, aba\}$ is synchronizing. Example: Take the code $\{a, baab\}$.

> baab a a baab a a baab baab a ba a baab a a baab a a bbaaba ba abaabaabaa baab baab a

> > ▲□▶▲□▶▲□▶▲□▶ □ のQで

The word *baabbaab* is synchronizing: after reading it, only one interpretation is possible.

Prefix codes

Definition

A code is called *prefix* if no its codeword is a prefix of another codeword.

To a finite prefix code X one can naturally assign its literal automaton $A = (Q, \Sigma, \delta)$, which is a partial DFA. The set Q of states is the set of proper prefixes of words in X. The transition function is defined as

$$\delta(q, x) = \begin{cases} qx & \text{if } qx \text{ is a proper prefix of a codeword,} \\ \varepsilon & \text{if } qx \in X. \end{cases}$$

The number of states of a literal decoder does not exceed the total length of all words in the code.

Prefix codes

Definition

A code is called *prefix* if no its codeword is a prefix of another codeword.

To a finite prefix code X one can naturally assign its literal automaton $A = (Q, \Sigma, \delta)$, which is a partial DFA. The set Q of states is the set of proper prefixes of words in X. The transition function is defined as

$$\delta(q, x) = \begin{cases} qx & \text{if } qx \text{ is a proper prefix of a codeword,} \\ \varepsilon & \text{if } qx \in X. \end{cases}$$

The number of states of a literal decoder does not exceed the total length of all words in the code.

Prefix codes

Definition

A code is called *prefix* if no its codeword is a prefix of another codeword.

To a finite prefix code X one can naturally assign its literal automaton $A = (Q, \Sigma, \delta)$, which is a partial DFA. The set Q of states is the set of proper prefixes of words in X. The transition function is defined as

$$\delta(q,x) = \begin{cases} qx & \text{if } qx \text{ is a proper prefix of a codeword,} \\ \varepsilon & \text{if } qx \in X. \end{cases}$$

The number of states of a literal decoder does not exceed the total length of all words in the code.

Synchronizing automata

Definition

A word $w \in \Sigma^*$ is called *synchronizing* for a partial DFA $A = (Q, \Sigma, \delta)$ if the image of the set *Q* under the mapping defined by *w* in *A* has size exactly one.

A finite prefix code is synchronizing if and only if its literal automaton is synchronizing.

Our goal is to study (small) finite synchronizing codes.

Proposition

A one-word code $X = \{x\}$ is synchronizing if and only if x is primitive. If it is synchronizing, x is a synchronizing word for it.

Our goal is to study (small) finite synchronizing codes.

Proposition

A one-word code $X = \{x\}$ is synchronizing if and only if x is primitive. If it is synchronizing, x is a synchronizing word for it.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A word is called *primitive* if it is not a power of a shorter word.

Theorem (Weinbaum)

Each primitive word w has a conjugate w' = uv such that u and w are unique factors of the circular word of w.

Corollary

Let *A* be the literal automaton of a synchronizing one-word code $X = \{x\}$. Then there exists a synchronizing word of length at most $\frac{|x|}{2}$ for *A*, and this bound is optimal.

Lower bound is provided by $\{a^k b a^{k+1} b\}$.

A word is called *primitive* if it is not a power of a shorter word.

Theorem (Weinbaum)

Each primitive word w has a conjugate w' = uv such that u and w are unique factors of the circular word of w.

Corollary

Let *A* be the literal automaton of a synchronizing one-word code $X = \{x\}$. Then there exists a synchronizing word of length at most $\frac{|x|}{2}$ for *A*, and this bound is optimal.

Lower bound is provided by $\{a^k b a^{k+1} b\}$.

Compositions of codes

To study prefix codes of more than one word we need more powerful tools.

Let *Y*, *Z* be codes over the alphabets Σ_Y , Σ_Z , where *Z* is a finite code. If $|\Sigma_Y| = |Z|$, there exists a bijection $\beta : \Sigma_Y \to Z$.

Using it, one can construct the code *X* which is the *composition* $Y \circ_{\beta} Z$ of the codes *Y* and *Z* by taking $X = \{\beta(y) \mid y \in Y\}$. Here $\beta(y) = \beta(y_1) \dots \beta(y_n)$ for $y = y_1 \dots y_n$ with $y_1, \dots, y_n \in \Sigma_Y$.

Compositions of codes

To study prefix codes of more than one word we need more powerful tools.

Let *Y*, *Z* be codes over the alphabets Σ_Y , Σ_Z , where *Z* is a finite code. If $|\Sigma_Y| = |Z|$, there exists a bijection $\beta : \Sigma_Y \to Z$. Using it, one can construct the code *X* which is the *composition* $Y \circ_\beta Z$ of the codes *Y* and *Z* by taking $X = \{\beta(y) \mid y \in Y\}$. Here $\beta(y) = \beta(y_1) \dots \beta(y_n)$ for $y = y_1 \dots y_n$ with $y_1, \dots, y_n \in \Sigma_Y$.

Complete codes

A word *w* is called a *factor* of *w*' if there exist words *u*, *v* such that uwv = w'. By X^* we denote the set of words which are concatenations of words from *X*.

Definition

A set of words X is called *complete* if every word is a factor of some word in X^* . Otherwise we call it *non-complete*, and the word which is not a factor is called *mortal*.

For example, $\{aa, ab, b\}$ is complete, while $\{aa, b\}$ is not since *bab* is not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal by inclusion code.

Complete codes

A word *w* is called a *factor* of *w*' if there exist words *u*, *v* such that uwv = w'. By X^* we denote the set of words which are concatenations of words from *X*.

Definition

A set of words X is called *complete* if every word is a factor of some word in X^* . Otherwise we call it *non-complete*, and the word which is not a factor is called *mortal*.

For example, $\{aa, ab, b\}$ is complete, while $\{aa, b\}$ is not since bab is not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal by inclusion code.

Complete codes

A word *w* is called a *factor* of *w*' if there exist words *u*, *v* such that uwv = w'. By X^* we denote the set of words which are concatenations of words from *X*.

Definition

A set of words X is called *complete* if every word is a factor of some word in X^* . Otherwise we call it *non-complete*, and the word which is not a factor is called *mortal*.

For example, $\{aa, ab, b\}$ is complete, while $\{aa, b\}$ is not since bab is not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal by inclusion code.

Theorem

Every prefix code is a composition of a complete code and a synchronizing code.

Thus, we can restrict to studying finite complete prefix codes.

Corollary

Every prefix code of 2,3,5,6 words is synchronizing.

Corollary

Every finite prefix code consisting only of primitive words is synchronizing.

Theorem

Every prefix code is a composition of a complete code and a synchronizing code.

Thus, we can restrict to studying finite complete prefix codes.

Corollary

Every prefix code of 2,3,5,6 words is synchronizing.

Corollary

Every finite prefix code consisting only of primitive words is synchronizing.

Theorem (P., Ryzhikov)

Provided an automaton A recognizing a prefix code X, the maximal decomposition of this code can be computed in polynomial time.

For a maximal decomposition $X = Y \circ Z$, Z is recognized by the automaton obtained by minimization of A with all states final. An automaton recognizing Y can be then recovered in a simple way.

Theorem (P., Ryzhikov)

Provided an automaton A recognizing a prefix code X, the maximal decomposition of this code can be computed in polynomial time.

For a maximal decomposition $X = Y \circ Z$, Z is recognized by the automaton obtained by minimization of A with all states final. An automaton recognizing Y can be then recovered in a simple way.

The *combinatorial rank* of a set X of words is the smallest number k such that X is a subset of C^* for a set C of words, where C has cardinality k.

Theorem (Ryzhikov, 2019)

Every finite code such that its combinatorial rank equals its cardinality is synchronizing.

Corollary

Every two-word code is synchronizing.

Conjecture (Ryzhikov, 2019)

For every two-word code X there is a synchronizing word in X^2 .

The *combinatorial rank* of a set X of words is the smallest number k such that X is a subset of C^* for a set C of words, where C has cardinality k.

Theorem (Ryzhikov, 2019)

Every finite code such that its combinatorial rank equals its cardinality is synchronizing.

Corollary

Every two-word code is synchronizing.

Conjecture (Ryzhikov, 2019)

For every two-word code X there is a synchronizing word in X^2 .

Conjecture (P., Ryzhikov)

Every finite code is a composition of a complete and a synchronizing one.

That would imply in particular that every three-word code is synchronizing.

A words is called *unbordered* if none of its prefixes equals to its suffix.

Proposition (Ryzhikov)

Let $X = \{x, y, z\}$ be a code such that $|x| \ge |y| \ge |z|$ and x, y are unbordered. Then X is synchronizing.

Conjecture (P., Ryzhikov)

Every finite code is a composition of a complete and a synchronizing one.

That would imply in particular that every three-word code is synchronizing.

A words is called *unbordered* if none of its prefixes equals to its suffix.

Proposition (Ryzhikov)

Let $X = \{x, y, z\}$ be a code such that $|x| \ge |y| \ge |z|$ and x, y are unbordered. Then X is synchronizing.

Thank you! Any questions?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●