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Codes

A word over alphabet Σ is a finite sequence of elements (called
letters) from Σ. Examples: abba,abcda.

Definition
A set X of words is called a code if no word can be represented as a
concatenation of words in X in two different ways.

Examples: {a,aba}, ba∗a are codes. The set {ab,ba,aba} is not: we
have (aba)(ba) = (ab)(aba).
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Synchronizing codes

Definition
A word w is called synchronizing for a code X if for any words u,v
such that uwv ∈ X ∗ we have uw ,wv ∈ X ∗. A code having a
synchronizing word is also called synchronizing.

This means that once we see ww in the sequence of codewords, we
can partition the decoding into two independent parts before the
second w and after the first w regardless the context.

Example: the code {aa,ab,ba,bb} is not synchronizing. Indeed,
assume that there exists a synchronizing word w for it. Suppose that
it’s of even length. Then taking u,v of odd length implies uwv ∈ X ∗,
but uw ,wv are of odd length and thus are not in X ∗. The same for odd
length.
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Synchronizing codes

Example: {a,aba} is synchronizing.
Example: Take the code {a,baab}.

baab a a baab a a baab baab a
ba a baab a a baab a a bbaaba

ba abaabaabaa baab baab a

The word baabbaab is synchronizing: after reading it, only one
interpretation is possible.
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Prefix codes

Definition
A code is called prefix if no its codeword is a prefix of another
codeword.

To a finite prefix code X one can naturally assign its literal automaton
A = (Q,Σ,δ ), which is a partial DFA. The set Q of states is the set of
proper prefixes of words in X . The transition function is defined as

δ (q,x) =

{
qx if qx is a proper prefix of a codeword,
ε if qx ∈ X .

The number of states of a literal decoder does not exceed the total
length of all words in the code.
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Synchronizing automata

Definition
A word w ∈ Σ∗ is called synchronizing for a partial DFA
A = (Q,Σ,δ ) if the image of the set Q under the mapping defined by
w in A has size exactly one.

A finite prefix code is synchronizing if and only if its literal
automaton is synchronizing.



One-word codes

Our goal is to study (small) finite synchronizing codes.

Proposition

A one-word code X = {x} is synchronizing if and only if x is
primitive. If it is synchronizing, x is a synchronizing word for it.
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One-word codes

A word is called primitive if it is not a power of a shorter word.

Theorem (Weinbaum)

Each primitive word w has a conjugate w ′ = uv such that u and w are
unique factors of the circular word of w .

Corollary

Let A be the literal automaton of a synchronizing one-word code
X = {x}. Then there exists a synchronizing word of length at most |x |2
for A, and this bound is optimal.

Lower bound is provided by {ak bak+1b}.
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Compositions of codes

To study prefix codes of more than one word we need more powerful
tools.
Let Y , Z be codes over the alphabets ΣY , ΣZ , where Z is a finite code.
If |ΣY |= |Z |, there exists a bijection β : ΣY → Z .
Using it, one can construct the code X which is the composition
Y ◦β Z of the codes Y and Z by taking X = {β (y) | y ∈ Y}. Here
β (y) = β (y1) . . .β (yn) for y = y1 . . .yn with y1, . . . ,yn ∈ ΣY .
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Complete codes

A word w is called a factor of w ′ if there exist words u,v such that
uwv = w ′. By X ∗ we denote the set of words which are
concatenations of words from X .

Definition
A set of words X is called complete if every word is a factor of some
word in X ∗. Otherwise we call it non-complete, and the word which is
not a factor is called mortal.

For example, {aa,ab,b} is complete, while {aa,b} is not since bab is
not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal
by inclusion code.



Complete codes

A word w is called a factor of w ′ if there exist words u,v such that
uwv = w ′. By X ∗ we denote the set of words which are
concatenations of words from X .

Definition
A set of words X is called complete if every word is a factor of some
word in X ∗. Otherwise we call it non-complete, and the word which is
not a factor is called mortal.

For example, {aa,ab,b} is complete, while {aa,b} is not since bab is
not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal
by inclusion code.



Complete codes

A word w is called a factor of w ′ if there exist words u,v such that
uwv = w ′. By X ∗ we denote the set of words which are
concatenations of words from X .

Definition
A set of words X is called complete if every word is a factor of some
word in X ∗. Otherwise we call it non-complete, and the word which is
not a factor is called mortal.

For example, {aa,ab,b} is complete, while {aa,b} is not since bab is
not a factor of a concatenation of codewords.

Theorem (Schützenberger, 1955)

For a recognizable code, to be complete is equivalent to be a maximal
by inclusion code.



Maximal decomposition

Theorem
Every prefix code is a composition of a complete code and a
synchronizing code.

Thus, we can restrict to studying finite complete prefix codes.

Corollary

Every prefix code of 2,3,5,6 words is synchronizing.

Corollary

Every finite prefix code consisting only of primitive words is
synchronizing.
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Maximal decomposition

Theorem (P., Ryzhikov)

Provided an automaton A recognizing a prefix code X , the maximal
decomposition of this code can be computed in polynomial time.

For a maximal decomposition X = Y ◦Z , Z is recognized by the
automaton obtained by minimization of A with all states final. An
automaton recognizing Y can be then recovered in a simple way.



Maximal decomposition

Theorem (P., Ryzhikov)

Provided an automaton A recognizing a prefix code X , the maximal
decomposition of this code can be computed in polynomial time.

For a maximal decomposition X = Y ◦Z , Z is recognized by the
automaton obtained by minimization of A with all states final. An
automaton recognizing Y can be then recovered in a simple way.



General codes

The combinatorial rank of a set X of words is the smallest number k
such that X is a subset of C∗ for a set C of words, where C has
cardinality k .

Theorem (Ryzhikov, 2019)

Every finite code such that its combinatorial rank equals its
cardinality is synchronizing.

Corollary

Every two-word code is synchronizing.

Conjecture (Ryzhikov, 2019)

For every two-word code X there is a synchronizing word in X 2.
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General codes

Conjecture (P., Ryzhikov)

Every finite code is a composition of a complete and a synchronizing
one.

That would imply in particular that every three-word code is
synchronizing.
A words is called unbordered if none of its prefixes equals to its suffix.

Proposition (Ryzhikov)

Let X = {x ,y ,z} be a code such that |x | ≥ |y | ≥ |z| and x ,y are
unbordered. Then X is synchronizing.
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Thank you! Any questions?


