

Generalized Right-Angled Artin pro-*p*-groups

CLAUDIO QUADRELLI

joint with Ilir SNOPCE (UFRJ - Brazil) and Matteo VANNACCI (HHU - Germany)

June 13th 2019 Cremona - PoliMi

Graphs and RAAGs

Let $\Gamma = (\mathcal{V}, \mathcal{E})$ a finite undirected graph with vertices and edges

$$\mathcal{V} = \{\mathbf{v}_1, \ldots, \mathbf{v}_d\}, \quad \mathcal{E} = \{(\mathbf{v}_i, \mathbf{v}_j), 1 \leq i < j \leq d\}$$

(thus, no loops). The right-angled Artin group G_{Γ} associated to the graph Γ is the group

$$G_{\Gamma} = \langle v_1, \dots, v_d \mid [v_i, v_j] = 1 \text{ for } (v_i, v_j) \in \mathcal{E} \rangle.$$

They have nice properties!

- G_{Γ} is torsion-free and $G_{\Gamma}^{ab} \simeq \mathbb{Z}^d$
- If $\Gamma' \subseteq \Gamma$ is an induced subgraph then $G_{\Gamma'} \leq G_{\Gamma}$, and if $\Gamma = \Gamma_1 \dot{\cup} \Gamma_2$ then $G_{\Gamma} = G_{\Gamma_1} * G_{\Gamma_2}$
- Every G_Γ embeds as a finite index subgroup of a right-angled Coxeter group

Cohomology of RAAGs

Cohomology of RAAGs

$$H^{\bullet}(G_{\Gamma},\mathbb{F}_p)\simeq \Lambda_{\bullet}(\Gamma^{op}):=\frac{\Lambda_{\bullet}\langle \mathcal{V}^*\rangle}{(v_i^*\wedge v_j^*\mid (v_i,v_j)\notin \mathcal{E})}$$

We can identify every product $v_{i_1}^* \cdots v_{i_n}^* \in H^n(G_{\Gamma}, \mathbb{F}_p)$ with the clique (= induced complete subgraph) with vertices v_{i_1}, \ldots, v_{i_n} (so $v_{i_1}^* \cdots v_{i_n}^* = 0$ if $(v_{i_h}, v_{i_k}) \notin \mathcal{E}$ for some i_h, i_k).

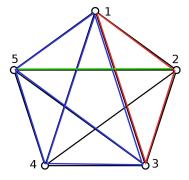
The cohomology algebra $H^{\bullet}(G_{\Gamma}, \mathbb{F}_p)$ is quadratic, i.e., it is generated by elements of degree 1 and its relations originate from homogeneous relations of degree 2 $(v_i^* v_j^* = -v_j^* v_i^*, \text{ and } v_i^* v_j^* = 0$ if $(v_i, v_j) \notin \mathcal{E}$).

This builds a bridge to Number Theory...

Generalised p-RAAGs

References

Cohomology of RAAGs Example 1



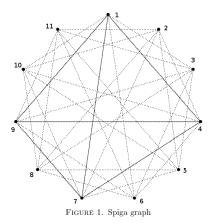
The complete graph Γ on 5 vertices $\mathcal{V} = \{v_1, \ldots, v_5\}$

 $H^{\bullet}(G_{\Gamma},\mathbb{F})\simeq \Lambda_{\bullet}(\mathcal{V}^*)$ green = $v_2^* v_5^*$ $red = v_1^* v_2^* v_3^*$ blue = $v_1^* v_3^* v_4^* v_5^*$ $H^{5}(G_{\Gamma},\mathbb{F})=\langle v_{1}^{*}\cdots v_{F}^{*}\rangle$ $H^6(G_{\Gamma},\mathbb{F})=0$

Generalised p-RAAG

References

Cohomology of RAAGs Example 2



 $egin{aligned} &v_1^*v_2^*=0 \ \mbox{as} \ &(v_1,v_2)
otin \mathcal{E}, \ \mbox{whereas} \ &v_1^*v_4^*
otin 0 \end{aligned}$

In the graph we can see $v_1^* v_4^* v_7^* v_9^*$

 $H^5(G_{\Gamma},\mathbb{F})=0$ as there are no 5-cliques in Γ

Pro-p groups

A pro-*p* group is a *topological* group \mathcal{G} which (1) is compact; (2) is totally disconnected; (3) has a basis $\{N_i \leq \mathcal{G}, |\mathcal{G} : N_i| = p^{n_i}\}$ of open neighb.hds of 1. Equivalently, $\mathcal{G} = \varprojlim_i G_i$, with $|G_i| = p^{n_i}$.

Given a group G, its pro-p completion is

$$G_{\hat{p}} = \varprojlim_{N \in \mathcal{N}_p} G/N$$

where $\mathcal{N}_p = \{ N \leq G, |G: N| = p^{n_N} \}.$

Examples

- finite *p*-groups
- Z_p = {a₀ + a₁p + a₂p² + ..., a_i ∈ F_p} = ⟨1⟩ is the completion of Z w.r.t. the topology induced by {pⁿZ_p, n ≥ 1}
- a free pro-*p* group \mathcal{F} is the completion of F_{abs} w.r.t. the topology induced by $\{U \subseteq F_{abs} \mid |F_{abs} : U| = p^n\}$

Galois pro-p groups

Given a field \mathbb{K} , the Galois group $\mathcal{G}_{\mathbb{K}}(p) = \operatorname{Gal}(\mathbb{K}(p)/\mathbb{K})$ of the maximal *p*-extension is the maximal pro-*p* quotient of the *absolute* Galois group $\mathcal{G}_{\mathbb{K}}$.

Very **BIG** question in Galois theory

Characterise the $\mathcal{G}_{\mathbb{K}}(p)$'s among all pro-p groups

By the Rost-Voevodsky Theorem ('11), we know that if $1 \neq \sqrt[p]{1} \in \mathbb{K}$ then the \mathbb{F}_p -cohomology algebra

$$H^{ullet}(\mathcal{G}_{\mathbb{K}}(p),\mathbb{F}_p)=igoplus_{n\geq 0}H^n(\mathcal{G}_{\mathbb{K}}(p),\mathbb{F}_p)$$

is quadratic.

Right-angled Artin pro-*p* groups

Pro-p completion of RAAGs behave almost like abstract RAAGs!

Theorem (Lorensen '10) A RAAG G_{Γ} and its pro-*p* completion \mathcal{G}_{Γ} have the same \mathbb{F}_{p} -cohomology

Thus there are many pro-p groups with quadratic \mathbb{F}_p -cohomology! But...

- ... if Γ contains a square as induced subgraph then $\mathcal{G}_{\Gamma} \not\simeq \mathcal{G}_{\mathbb{K}}(p)$ (Q. '14)
- ... if Γ contains a path of 3 edges as induced subgraph then it is conjectured that $\mathcal{G}_{\Gamma} \not\simeq \mathcal{G}_{\mathbb{K}}(p)$ (Weigel and Q.)

Generalised *p*-RAAGs and *p*-graphs

We define a *p*-graph $\Gamma_f = (\Gamma, f)$ to be a graph $\Gamma = (\mathcal{V}, \mathcal{E})$ endowed with a labelling

$$f: \mathcal{E} o p\mathbb{Z}_p imes p\mathbb{Z}_p, \ e = (v_i, v_j) \mapsto (f_0(e), f_1(e)), \quad ext{for } i < j$$

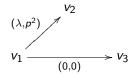
Generalised right-angled Artin pro-p groups

The generalised *p*-RAAG \mathcal{G}_{Γ} associated to the *p*-graph $\Gamma_f = (\Gamma, f)$, with $\Gamma = (\mathcal{V}, \mathcal{E})$, is the pro-*p* group with presentation

$$\mathcal{G}_{\Gamma_f} = \langle v_1, \dots, v_d \mid [v_i, v_j] = v_i^{f_0(e)} v_j^{f_1(e)}, \forall \ e = (v_i, v_j) \in \mathcal{E}
angle_{\hat{
ho}}.$$

Generalised *p*-RAAGs Examples

- Let Γ be a graph, let $c \equiv (0,0) \in p\mathbb{Z}_p \times p\mathbb{Z}_p$ be the constant *p*-labelling on Γ and set $\Gamma_c = (\mathcal{G}, c)$; then \mathcal{G}_{Γ_c} is the pro-*p* completion of an abstract RAAG.
- Let Γ_f be the *p*-graph



with
$$\lambda \in p\mathbb{Z}_p$$
. Then
 $\mathcal{G}_{\Gamma_f} = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \mid [\mathbf{v}_1, \mathbf{v}_2] = \mathbf{v}_1^{\lambda} \mathbf{v}_2^{p^2}, [\mathbf{v}_1, \mathbf{v}_3] = 1 \rangle_{\hat{p}}$

≥ DEGLI STUDI

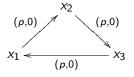
Generalised *p*-RAAGs More examples

• Let Γ_f be the *p*-graph

$$v_1 \xrightarrow{(a,b)} v_2$$

with $a, b, \lambda \in \mathbb{Z}_p$. Then $\mathcal{G}_{\Gamma_f} = \langle v_1, v_2 \mid [v_1, v_2] = v_1^a v_2^b \rangle_{\hat{p}}$. In fact \mathcal{G}_{Γ_f} is a 2-generated *Demushkin group* — i.e., $\mathcal{G}_{\Gamma_f} \simeq \langle x, y \mid [x, y] = y^\lambda, \lambda \in p\mathbb{Z}_p \rangle_{\hat{p}} \simeq \mathbb{Z}_p \rtimes \mathbb{Z}_p$.

• Let Γ_f be the *p*-graph



Then
$$\mathcal{G}_{\Gamma_f} = \langle v_1, v_2, v_3 \mid [v_1, v_2] v_1^{\rho} = [v_2, v_3] v_2^{\rho} = [v_3, v_1] v_3^{\rho} \rangle_{\hat{\rho}}$$
 is finite.

Cohomology of generalised *p*-RAAGs

If
$$H^{\bullet}(\mathcal{G}_{\Gamma_{f}}, \mathbb{F}_{p})$$
 is quadratic, then $H^{\bullet}(\mathcal{G}_{\Gamma_{f}}, \mathbb{F}_{p}) \simeq \Lambda_{\bullet}(\Gamma^{op})$ (*)

When does this hold?

- Uniform: if \mathcal{G}_{Γ_f} is uniform, i.e., Γ is complete and \mathcal{G}_{Γ_f} is torsion-free.
- Disjoint union: if Γ_f is the disjoint union of two *p*-graphs $\Gamma'_{f'}, \Gamma''_{f''}$ s.t. (*) holds for $\mathcal{G}_{\Gamma'_{c''}}, \mathcal{G}_{\Gamma''_{c''}}$.
- Mirroring: if Γ_f is the *p*-graph obtained by "mirroring" a *p*-graph Γ'_{f'} s.t. (*) holds for G_{Γ'_{f'}} along a full subgraph of Γ'_{f'}.
- Complete amalgams: if Γ_f is obtained by gluing two *p*-graphs Γ'_{f'}, Γ''_{f''} s.t. (*) holds for G_{Γ1}, G_{Γ2} along a complete full subgraph of Γ'_{f'} and Γ''_{f''}.
- RAAGs: if Γ_c has all labels equal to 0 $(\mathcal{G}_{\Gamma_c} = (\mathcal{G}_{\Gamma})_{\hat{p}})$.

Cohomology of generalised *p*-RAAGs Triangle-free graphs

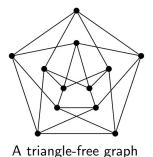
Theorem

Let $\Gamma_f = (\Gamma, f)$ be a *p*-graph. Then $H^n(\mathcal{G}_{\Gamma_f}, \mathbb{F}_p) = 0$ for n > 2 if and only if Γ contains no triangular subgraphs. In this case $H^{\bullet}(\mathcal{G}_{\Gamma_f}, \mathbb{F}_p)$ is quadratic.

On the other hand, we check which triangular *p*-graphs Γ_f yield quadratic $H^{\bullet}(\mathcal{G}_{\Gamma_f}, \mathbb{F}_p)$:

Theorem

A triangular *p*-graph Γ_f yields quadratic $H^{\bullet}(\mathcal{G}_{\Gamma_f}, \mathbb{F}_p)$ if and only if \mathcal{G}_{Γ_f} is metabelian uniform or $\mathcal{G}_{\Gamma_f} \leq_o \operatorname{SL}_2^1(\mathbb{Z}_p)$ uniform of dimension 3.



References

A Tits' alternative

For Galois groups of maximal *p*-extensions one has the following Tits' alternative (Ware '92, Q. '14): if $\mathbb{K} \ni \sqrt[p]{1} \neq 1$, then either $\mathcal{G}_{\mathbb{K}}(p)$ is analytic or it contains a free non-abelian closed subgroup.

Theorem

Let \mathcal{G}_{Γ_f} be a generalised *p*-RAAG with quadratic cohomology. Then either \mathcal{G}_{Γ_f} is uniform or it contains a free non-abelian closed subgroup. Moreover, in the latter case \mathcal{G}_{Γ_f} is generalised Golod–Shafarevich.

We formulate the following Conjecture: if a pro-p group G has quadratic \mathbb{F}_p -cohomology then either G is analytic, or it contains a free non-abelian closed subgroup

References:

- M. Ershov, *Golod–Shafarevich groups: a survey*, Internat. J. Algebra Comput. (2012).
- C. Quadrelli, *Bloch–Kato pro-p groups and locally powerful groups*, Forum Math. (2014).
- C. Quadrelli, I. Snopce, M. Vannacci, *On pro-p groups with quadratic Galois cohomology*, preprint.
- R. Ware, Galois groups of maximal p-extensions, Trans. Amer. Math. Soc. (1992).

