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A common framework

Definition

Given a relational structure (A; Γ), we define CSP(A; Γ) to be the
constraint satisfaction problem (CSP):

Instance I : a finite list of variables V and a finite list of constraints C
in which each constraint is an atomic formula (in the signature of Γ).

Question: Does I have a solution over A? i.e. does there exists a
map V → A satisfying the constraints C?

Example

Given a finite set A, the problem CSP(A; 6=) has instances of the form

x 6= y , y 6= z , y 6= w .

The problem is solvable in polynomial time (is tractable) if |A| = 1, 2, and
is NP-complete otherwise.
CSP(A; 6=) corresponds to graph |A|-colouring.



Graph 3-colouring



3-Graph colouring



System of equations satisfactibility

Example (The system of equations satisfactibility problem)

Given a finite algebra (A;F ), the problem EQN∗A is:
Input: a system of equations E over A (constants and variables)
Question: does E have a solution?

The problem EQN∗A is equivalent to CSP(A; c1, . . . , cn,Rf : f ∈ F ) where
A = {c1, . . . , cn} and Rf = {(a1, . . . , am, f (a1, . . . , am)) : ai ∈ A}.

Theorem (Kĺıma, Tesson, Thérien 2007)

Every CSP over a finite domain is polynomial-time equivalent to EQN∗S for
some finite semigroup S.



ω-categoricity

Much progress has been made in understanding the CSPs of infinite
structures: often in the (highly symmetric) ω-categorical setting.

Definition

A structure M is ω-categorical if Th(M) has one countable model, up to
isomorphism. Equivalently, if Aut(M) has only finitely many orbits on its
action on Mn for each n ≥ 1.

Example

A right zero semigroup S has Aut(S) = S|S | and is ω-categorical:

∀x , y , z [(xy)z = x(yz)]

∀x , y [xy = y ]

‘correct cardinality’

Example

CSP(Q;<) and CSP(N; 6=) are tractable (!).



Our Problem

Given an algebra A, we are concerned with the following constraint
satisfaction problem, D-EQNA:

Instance: A finite list E of equations and disequalities over A with
variables from a finite set V (no added constants).

Question: Is there an assignment φ : V → A such that E holds in A?

Note that D-EQNA is equivalent to CSP(A; 6=,Rf : f ∈ F ), where for each
basic m-ary function f of A, Rf is the m + 1-ary relation
{(a1, . . . , am, f (a1, . . . , am)) : ai ∈ A}.



D-EQN for right zero semigroups

Example

Let S be a right-zero semigroup, so xy = y for each x , y ∈ S . Then an
instance of D-EQNS could be:

xy = z , tu = y , x 6= z , t 6= u.

Notice this can be satisfied if and only if y = z , u = y , x 6= z , t 6= u. The
problem is thus equivalent to CSP(|S |; 6=).

Lemma

Let S be a right-zero semigroup. Then D-EQNS is tractable if |S | = 1, 2
or ω, and is NP-complete otherwise.



Motivation

Motivation to study D-EQNA for an ω-categorical algebra:

A non-trivial problem: As we will see, even in our very restrictive
setting we obtain both tractability and hardness.

Constraint entailment: Testing if a list of equations E implies an
equation u = v is equivalent of testing if E ∪ {u 6= v} is satisfiable.

Links to Identity Checking: If D-EQNA is tractable then
CHECK-ID(A) is also tractable.

Sporadically studied problem: D-EQNA has been studied for key
structures, including:

the lattice reduct of the atomless Boolean algebra (A;∪,∩) (NP-hard,
Bodirsky, Hils, Krimkevitch, 2011)
the infinite-dimensional vector space over the finite field Fq (tractable,
Bodirsky, Chen, Kára, von Oertzen, 2007).



Polymorphisms

The hardness of a problem often comes from a lack of symmetry.
Our usual objects that capture symmetry (automorphism group or
endomorphism monoid) are not sufficient.
We require a more general symmetry - polymorphisms!

Definition

Let (A; Γ) be a relational structure. An n-ary homomorphism f : An → A
is called a polymorphism of A. That is, f preserves every an m-ary
relation ρ ⊆ Am:

a11 a12 · · · a1m ∈ ρ
a21 a22 · · · a2m ∈ ρ

...
... · · ·

...
an1 a12 · · · a1m ∈ ρ
↓f ↓f · · · ↓f
X X · · · X ∈ ρ

The set of all polymorphisms is denoted Pol(A).



A simple example

Example

Let (A;F ) be an algebra and A = (A; 6=,Rf : f ∈ F ). Then f : An → A is
a polymorphism of A if and only if f is an algebra homomorphism and

x1 6= y1, . . . , xn 6= yn ⇒ f (x1, . . . , xn) 6= f (y1, . . . , yn)

or, equivalently, if

f (x1, . . . , xn) = f (y1, . . . , yn)⇒ xi = yi for some 1 ≤ i ≤ n.

In particular, every endomorphism of A is an embedding.

We call a pair of algebras A and B are bi-embeddable, denoted A ≡ B, if
there exists embeddings between them. In this case we have
D-EQNA=D-EQNB .



Polymorphisms give tractability

For finite CSPs, the existence of a Siggers polymorphism is necessary and
sufficient for tractability (Bulatov, Zhuk 2017). For infinite CSPs less is
known.

Definition

A 6-ary operation f ∈ Pol(A) is called a pseudo-Siggers polymorphism if

αf (x , y , x , z , y , z) = βf (y , x , z , x , z , y)

for some unary operations α, β ∈ Pol(A).



A method by polymorphisms

Theorem (Barto, Pinsker 2006)

If A is ω-categorical and Pol(A) does not contain a pseudo-Siggers
polymorphism, then CSP(A) is NP-hard.

This is particularly useful for our problem, and gives rise to classifications
of the complexity of key algebras.

Corollary

Let A be an ω-categorical algebra. If D-EQNA is tractable then there
exists a homomorphism f : A6 → A such that

f (x1, . . . , x6) = f (y1, . . . , y6)⇒ xi = yi for some 1 ≤ i ≤ 6,

there exists embeddings α and β of A with
αf (x , y , x , z , y , z) = βf (y , x , z , x , z , y).



Semilattices

Proposition

Let Y be an ω-categorical semilattice. Then (Y ; 6=,R∧) has a
pseudo-Siggers if and only if it is bi-embeddable with Y × Y .

A non-trivial semilattice Y which is bi-embeddable with Y × Y
embeds all finite semilattices.
Examples include the universal semilattice, an ω-categorical
semilattice which is the Fräıssé limit of the class of all finite
semilattices.

Lemma

Let U be the universal semilattice. Then D-EQNU is tractable.

Corollary

Let Y be a non-trivial ω-categorical semilattice. Then D-EQNY is
tractable if Y is bi-embeddable with the universal semilattice, and is
NP-hard otherwise.



Lattices

Similar occurrences holds for lattices:

A lattice L containing a pseudo-Siggers polymorphism is
bi-embeddable with L.

The universal lattice (which embeds all finite lattices) L is tractable.

Open: Is a non-trivial lattice L with D-EQNL necessarily bi-embeddable
with L?

Much is now known about the complexity of D-EQNA for algebras A with
A ≡ A× A.

Studied have also been made into the group case (done (?) in the abelian
case).

Open: If G is such that D-EQNG is tractable, then is G abelian?


