Semigroup actions and the discrete log problem

Jim Renshaw

June 12, 2019

School of Mathematics

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Discrete Log

- Choose a large prime p and a residue n coprime to p 1.
- Encode data using integers in \mathbb{Z}_p .
- Encrypt data using the function $x \mapsto x^n \mod p$.
- Decrypt using the function x → x^m mod p where nm ≡ 1 mod (p − 1).

School of Mathematics

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Discrete Log

- More algebraically, let G = U_{p-1} be the group of units of the ring Z_{p-1} and S = U_p the group of units of Z_p.
- For $n \in G, x \in S$ define an action of G on S by $n \cdot x = x^n$.
- The value of x is the *plaintext*, n is the *(encryption) key* and $n \cdot x$ is the *ciphertext*.
- We call *n* the *discrete log* of x^n .
- The usefulness of this system lies in the fact that we know of no efficient, non-quantum algorithms, to solve this particular *discrete log problem* given *x*, *xⁿ* and *p*, calculate *n*.

Discrete Log

Can we 'improve' on this action of a group on a group by replacing one or both of the groups by a semigroup?

Completely Regular semigroups

Let *S* be a semigroup and define an action of U_r , the group of units mod *r*, on *S* by

$$n \cdot x = x^n$$
.

In order for this action to be invertible, there needs to exist m such that

$$(x^n)^m = x.$$

Hence *S* must be completely regular.

Completely Regular semigroups

Two classic examples:

Discrete Log Cipher
For U_{p-1} acting on Z_p, we have

$$\mathbb{Z}_{p}=U_{p}\cup\{0\}.$$

Completely Regular semigroups

Two classic examples:

Discrete Log Cipher
For U_{p-1} acting on Z_p, we have

$$\mathbb{Z}_{p}=U_{p}\cup\{0\}.$$

In the second second

For distinct primes p and q, $U_{\phi(pq)}$ acts on \mathbb{Z}_{pq} and

$$\mathbb{Z}_{pq} \cong U_{pq} \stackrel{.}{\cup} U_p \stackrel{.}{\cup} U_q \stackrel{.}{\cup} \{0\}.$$

School of Mathematics

Completely simple semigroups

Suppose now that *S* is a completely simple semigroup, considered as a Rees matrix semigroup $\mathcal{M}[G; I, \Lambda; P] = I \times G \times \Lambda$ and suppose also that *G* is finite, of order *r* so that $g^r = 1$ for all $g \in G$.

$$(i, g, \lambda)(j, h, \mu) = (i, gp_{\lambda j}h, \mu).$$

Define an action of U_r , the group of units in \mathbb{Z}_r , on *S* by $n \cdot x = x^n$, so that if $x = (i, g, \lambda)$ then

$$n \cdot x = x^n = (i, (gp_{\lambda i})^{n-1}g, \lambda).$$

Completely simple semigroups

Suppose now that *n* is coprime to *r* and that $mn \equiv 1 \mod r$. Then

$$\begin{aligned} x^{mn} &= (i, (gp_{\lambda i})^{mn-1}g, \lambda) = (i, (gp_{\lambda i})^{mn}p_{\lambda i}^{-1}, \lambda) = \\ & (i, (gp_{\lambda i})p_{\lambda i}^{-1}, \lambda) = (i, g, \lambda) = x. \end{aligned}$$

Consequently if we know n, x^n and P, then we can compute x^{mn} and so recover x.

Moreover

$$(gp_{\lambda i})^{mn-1}g = \left(\left((gp_{\lambda i})^{n-1}g\right)p_{\lambda i}\right)^m p_{\lambda i}^{-1}.$$

We will in fact assume that $|\Lambda| = 1$.

chool of Mathematics

(日)

Completely simple semigroups

Theorem (Banin & Tsaban, 2016)

The discrete log problem over a semigroup, can be reduced, in polynomial time, to the classic discrete log problem in a subgroup of *S*.

However this assumes that we can compute with the semigroup *S* and in order to do that with a Rees Matrix Semigroup, we would require knowledge of the sandwich matrix *P*.

Chosen plaintext attack

- |I| = m;
- g_1, \ldots, g_{m+1} distinct elements of *G*;
- Encrypt the values (i, g_i) as $(i, g_i^n p_i^{n-1})$.
- Pigeon hole principle : $i \neq j$ such that $p_i = p_j$ and hence

$$(g_i^n p_i^{n-1})(g_j^n p_j^{n-1})^{-1} = (g_i g_j^{-1})^n.$$

•
$$\binom{m+1}{2} = O(m^2)$$
 possible pairs.

School of Mathematics

Chosen plaintext attack

- Encrypt (*i*, *g*) and (*i*, *g*⁻¹);
- obtain $(i, (gp_i)^{n-1}g)$ and $(i, (g^{-1}p_i)^{n-1}g^{-1})$;
- If G is abelian, then we can calculate $(p_i^{n-1})^2$ and hence $(g^2)^n$.

Completely Simple Cipher

Alice wants to sent Bob a secret message. Let *G* be a finite (abelian) group and let I = G. Let $n \in U_{|G|}$ and $s \in I$ be two secret keys known only to Alice and Bob.

We encrypt $g \in G$ as follows: choose a random value $i \in I$ and let $p_i = H(i, s)$, where *H* is some cryptographically secure hash function.

Alice computes $(i, (gp_i)^{n-1}g)$ as her encrypted value of g to send to Bob.

Bob calculates $p_i = H(i, s)$ and $m \in U_{|G|}$ such that $mn \equiv 1 \mod |G|$ and then computes

$$g = \left(\left((gp_i)^{n-1}g \right) p_i \right)^m p_i^{-1}.$$

School of Mathematics

(日)

Brute force attack

Group case. Given g and g^n , calculate g, g^2, \ldots, g^n . Worst case $\phi(|G|) \sim O(|G|)$ multiplications.

Brute force attack

Group case. Given g and g^n , calculate g, g^2, \ldots, g^n . Worst case $\phi(|G|) \sim O(|G|)$ multiplications.

Semigroup case. Given g and $(i, (gp_i)^{n-1}g)$

Computing *n* using trial multiplication attack would consists of computing $(qq)^{m-1}q$ for 1 < m < n and $q \in G$ in order to find the relevant pair (n, p_i) . Worst case $|G|\phi(|G|) \sim O(|G|^2)$.

> chool of Mathematics ・ロット (雪) (日) (日)

3

Completely Simple Cipher

• If |G| = n is odd there are at least

$$S(n) = n \prod_{p|n} \left(1 - \frac{2}{p}\right)$$

solutions.

- - 2 If |G| = n is even there are at least T(n) solutions where

$$T(n) = O(rac{n}{4r}S(r))$$

where r is the largest odd factor of n.

Completely Simple Cipher

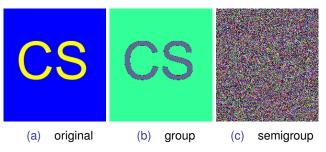


Figure : discrete log encryption on similar blocks

