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Discrete Log

Choose a large prime p and a residue n coprime to p − 1.
Encode data using integers in Zp.
Encrypt data using the function x 7→ xn mod p.
Decrypt using the function x 7→ xm mod p where nm ≡ 1
mod (p − 1).
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Discrete Log

More algebraically, let G = Up−1 be the group of units of
the ring Zp−1 and S = Up the group of units of Zp.
For n ∈ G, x ∈ S define an action of G on S by n · x = xn.
The value of x is the plaintext, n is the (encryption) key and
n · x is the ciphertext.
We call n the discrete log of xn.
The usefulness of this system lies in the fact that we know
of no efficient, non-quantum algorithms, to solve this
particular discrete log problem - given x , xn and p,
calculate n.
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Discrete Log

Can we ’improve’ on this action of a group on a group by
replacing one or both of the groups by a semigroup?
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Completely Regular semigroups

Let S be a semigroup and define an action of Ur , the group of
units mod r , on S by

n · x = xn.

In order for this action to be invertible, there needs to exist m
such that

(xn)m = x .

Hence S must be completely regular.
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Completely Regular semigroups

Two classic examples:
1 Discrete Log Cipher

For Up−1 acting on Zp, we have

Zp = Up ∪ {0}.

2 RSA cipher
For distinct primes p and q, Uφ(pq) acts on Zpq and

Zpq ∼= Upq ∪̇ Up ∪̇ Uq ∪̇ {0}.
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Completely simple semigroups

Suppose now that S is a completely simple semigroup,
considered as a Rees matrix semigroup
M[G; I,Λ; P] = I ×G × Λ and suppose also that G is finite, of
order r so that gr = 1 for all g ∈ G.

(i ,g, λ)(j ,h, µ) = (i ,gpλjh, µ).

Define an action of Ur , the group of units in Zr , on S by
n · x = xn, so that if x = (i ,g, λ) then

n · x = xn = (i , (gpλi)
n−1g, λ).
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Completely simple semigroups

Suppose now that n is coprime to r and that mn ≡ 1 mod r .
Then

xmn = (i , (gpλi)
mn−1g, λ) = (i , (gpλi)

mnp−1
λi , λ) =

(i , (gpλi)p−1
λi , λ) = (i ,g, λ) = x .

Consequently if we know n, xn and P, then we can compute
xmn and so recover x .

Moreover

(gpλi)
mn−1g =

((
(gpλi)

n−1g
)

pλi

)m
p−1
λi .

We will in fact assume that |Λ| = 1.
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Completely simple semigroups

Theorem (Banin & Tsaban, 2016)
The discrete log problem over a semigroup, can be reduced, in
polynomial time, to the classic discrete log problem in a
subgroup of S.

However this assumes that we can compute with the semigroup
S and in order to do that with a Rees Matrix Semigroup, we
would require knowledge of the sandwich matrix P.
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Chosen plaintext attack

|I| = m;
g1, . . . ,gm+1 distinct elements of G;
Encrypt the values (i ,gi) as (i ,gn

i pn−1
i ).

Pigeon hole principle : i 6= j such that pi = pj and hence

(gn
i pn−1

i )(gn
j pn−1

j )−1 = (gig−1
j )n.(

m + 1
2

)
= O(m2) possible pairs.
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Chosen plaintext attack

Encrypt (i ,g) and (i ,g−1);
obtain (i , (gpi)

n−1g) and (i , (g−1pi)
n−1g−1);

If G is abelian, then we can calculate (pn−1
i )2 and hence(

g2)n.
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Completely Simple Cipher

Alice wants to sent Bob a secret message. Let G be a finite
(abelian) group and let I = G. Let n ∈ U|G| and s ∈ I be two
secret keys known only to Alice and Bob.

We encrypt g ∈ G as follows: choose a random value i ∈ I and
let pi = H(i , s), where H is some cryptographically secure hash
function.

Alice computes (i , (gpi)
n−1g) as her encrypted value of g to

send to Bob.

Bob calculates pi = H(i , s) and m ∈ U|G| such that mn ≡ 1
mod |G| and then computes

g =
((

(gpi)
n−1g

)
pi

)m
p−1

i .
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Brute force attack

Group case.
Given g and gn, calculate g,g2, . . . ,gn.
Worst case φ(|G|) ∼ O(|G|) multiplications.

Semigroup case.
Given g and (i , (gpi)

n−1g)

Computing n using trial multiplication attack would consists of
computing (gq)m−1g for 1 ≤ m ≤ n and q ∈ G in order to find
the relevant pair (n,pi). Worst case |G|φ(|G|) ∼ O(|G|2).
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Completely Simple Cipher

1 If |G| = n is odd there are at least

S(n) = n
∏
p|n

(
1− 2

p

)

solutions.
2 If |G| = n is even there are at least T (n) solutions where

T (n) = O(
n
4r

S(r))

where r is the largest odd factor of n.
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Completely Simple Cipher

(a) original (b) group (c) semigroup

Figure : discrete log encryption on similar blocks
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