New horizons in finite semigroup theory, 2019

John Rhodes

University of California at Berkeley

Presented at SandGAL 2019, Cremona, 10th June 2019

John Rhodes New horizons in finite semigroup theory, 2019

・ロト ・回ト ・ヨト ・ヨト

3

Geometry (Topology) = Linked Equation

Mathematics = Presentation Lemma (PL)

John Rhodes New horizons in finite semigroup theory, 2019

(日) (四) (王) (王) (王)

na a

- Leibniz said "everything" can be written in $\{0,1\}^+$ and "everything" can be approximated as such.
- So restricting Geometry, Topology and Mathematics to Discrete Mathematics (thanks to D. Knuth and R. Graham) is *no* restriction.
- For example, restricting to finite topologies (not necessarily T₂ (= Hausdorff)) up to weak homotopy is the same as finite CW complexes up to homotopy (see the Introduction of
 - J. A. Barnak, Algebraic Topology of Finite Topological Spaces and Applications, Springer, 2011.
- "Really" finite posets, from a certain point of view, dating back to Hausdorff.

- The "linked equations", in finite semigroup theory of *partial* maps (partial maps is the "correct" choice).
- See the blackboard and:
 - I. Stein, The representation theory of the monoid of all partial functions on a set and related monoids as El-category algebras, J. Algebra, 2016.
 - J. Rhodes and B. Steinberg, The q-theory of Finite Semigroups, Springer, 2009.
 - A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I, AMS, 1961.

イロト イポト イヨト イヨト 二日

San

- Thus in the special case of GGM with each row having ≤ 2 1's (degree ≤ 2) and containing all rows with exactly one 1, we have the graph associated $(b_1 - b_2)$ if $b_1 \neq b_2$ and $c(b_1, a) = 1 = c(b_2, a)$ for some a).
- Then the automorphism group of the graph is the group of units of the TH (translational hull), and the partial map is linked if the inverse image of a point or edge is empty, a point or an edge.
- Thus partial maps (see I. Stein) between graphs (points), so f⁻¹ of x ∈ X = {∅} ∪ {points} ∪ {edges} being another member of X is the "correct" definition of morphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- S. Margolis, J. Rhodes and P. V. Silva, On The Wilson Monoid of a Pairwise Balanced Design, preprint, 2019.

- J. H. Dinitz and S. Margolis, Continuous maps in finite projective space. In Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing, 1982.
- J. H. Dinitz and S. Margolis, Continuous maps on block designs, Ars Combin., 1982.
- R. M. Wilson, An existence theory for pairwise balanced designs i. composition theorems and morphisms, Journal of Comb. Th. (A), 1972.
- Current research.

Now on the blackboard I will talk about the first paper.

Stuart Margolis' later talk will be more detailed and inclusive.

The PL in finite semigroups, a not necessarily decidable necessary and sufficient condition for c(S) = n. See:

- J. Rhodes and B. Steinberg, The q-theory of Finite Semigroups, Chapter 4.
- K. Henckell, J. Rhodes and B. Steinberg, An effective lower bound for group complexity of finite semigroups and automata, Trans. Amer. Math. Soc., 2012.

I cannot explain the PL in this time allowed (a semester might be enough!), so let me relate it to other mathematics, and show it is a fairly "standard" idea.

イロト イポト イヨト イヨト 二日

• Deciding *c*, based on extensive previous theory, comes down to

Given a GM semigroup (S, A), is Sc = RLMc or RLMc + 1?

- By Schützenberger representation $S \leq G \wr RLM$.
- PL "explains" when Sc = RLMc.
- Now GM is a G-bundle over RLM, see 100 pages on this in
 - S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic, Springer-Verlag, 1994.
- This shows a major connection with standard mathematics (see blackboard).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Thank you for your interest and attention

◆□ → ◆□ → ◆ □ → ◆ □ →

3

590