Local finiteness for Green’s relations in varieties of inverse semigroups and completely regular semigroups

Pedro V. Silva

CMUP, University of Porto

Cremona, 12th June 2019
Joint work with

Filipa Soares (Polytechnic Institute of Lisbon, Portugal)

Mikhail Volkov (Ural Federal University, Russia)
Locally finite varieties of semigroups

- A **semigroup variety** is the class of all semigroups satisfying some collection of identities (like $xy = yx$ or $x^2 = x$)
- If such a collection can involve only finitely many variables, the variety is of **finite axiomatic rank**
A semigroup variety is the class of all semigroups satisfying some collection of identities (like $xy = yx$ or $x^2 = x$).

If such a collection can involve only finitely many variables, the variety is of finite axiomatic rank.

A variety is locally finite if all its finitely generated members are finite.

For instance, the variety defined by $x^2 = x$ is locally finite while the variety defined by $xy = yx$ is not.
A group G has finite exponent if it satisfies the identity $x^n = 1$ for some integer $n \geq 1$.

The bounded Burnside problem asks if there exists an infinite finitely generated group with bounded exponent.
Bounded Burnside problem

- A group G has finite exponent if it satisfies the identity $x^n = 1$ for some integer $n \geq 1$

- The bounded Burnside problem asks if there exists an infinite finitely generated group with bounded exponent

- The positive answer was given in 1968 by Novikov and Adian

- We refer to infinite finitely generated groups of finite exponent as Novikov-Adian groups (NAGs)
A semigroup with zero S is a nilsemigroup if some power of each element in S is equal to zero.
A semigroup with zero S is a *nilsemigroup* if some power of each element in S is equal to zero.

A semigroup variety is *periodic* if all its one-generated members are finite.

Clearly, a *locally finite* variety must be periodic.
A remarkable theorem of Mark Sapir

Theorem (Sapir 1987)

A periodic variety \mathbf{V} of semigroups of finite axiomatic rank is **locally finite** if and only if:

(i) all nilsemigroups in \mathbf{V} are locally finite;

(ii) \mathbf{V} contains no NAGs.
A remarkable theorem of Mark Sapir

Theorem (Sapir 1987)

A periodic variety \mathbf{V} of semigroups of finite axiomatic rank is **locally finite** if and only if:

(i) all nilsemigroups in \mathbf{V} are locally finite;
A periodic variety \mathbf{V} of semigroups of finite axiomatic rank is **locally finite** if and only if:

(i) all nilsemigroups in \mathbf{V} are locally finite;

(ii) \mathbf{V} contains no NAGs.
Green’s relations

The following five equivalence relations can be defined on every semigroup S:

- $x \mathcal{R} y$ if x and y are prefixes of each other
- $x \mathcal{L} y$ if x and y are suffixes of each other
- $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$
- $x \mathcal{J} y$ if x and y are factors of each other
Green’s relations

The following five equivalence relations can be defined on every semigroup S:

- $x \mathcal{R} y$ if x and y are prefixes of each other
- $x \mathcal{L} y$ if x and y are suffixes of each other
- $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$
- $x \mathcal{J} y$ if x and y are factors of each other

They were introduced by James Green in 1951 and are collectively referred to as Green’s relations.
Comparison

In general, we have:

\[
\begin{array}{ccc}
 J & D & R \\
 | & | & |
 H & D & L \\
\end{array}
\]
In general, we have:

\[\mathcal{J} \quad \mathcal{D} \]

\[\mathcal{R} \quad \mathcal{L} \]

\[\mathcal{H} \]

- **Periodic semigroups**: \(\mathcal{J} = \mathcal{D} \)
In general, we have:

- **Periodic** semigroups: $\mathcal{J} = \mathcal{D}$
- **Groups**: all Green’s relations coincide with the universal relation
Comparison

In general, we have:

- **Periodic** semigroups: $J = D$
- **Groups**: all Green’s relations coincide with the universal relation
- **Nilsemigroups**: all Green’s relations coincide with equality
Let \mathcal{K} be one of the five Green’s relations. A variety \mathbf{V} of semigroups is said to be locally \mathcal{K}-finite if each finitely generated semigroup in \mathbf{V} has only finitely many \mathcal{K}-classes.
Let \mathcal{K} be one of the five Green’s relations.

A variety \mathbf{V} of semigroups is said to be locally \mathcal{K}-finite if each finitely generated semigroup in \mathbf{V} has only finitely many \mathcal{K}-classes.

Volkov, Silva and Soares 2018: classification of locally \mathcal{K}-finite semigroup varieties.
Motivation: a natural generalization of local finiteness that bypasses the classical Burnside problem (as all semigroup varieties consisting of groups are locally \mathcal{K}-finite for any \mathcal{K}).
Motivation: a natural generalization of local finiteness that bypasses the classical Burnside problem (as all semigroup varieties consisting of groups are locally \mathcal{K}-finite for any \mathcal{K}).

Of course, every locally finite variety is locally \mathcal{K}-finite for any \mathcal{K}; hence, only locally \mathcal{K}-finite varieties which are not locally finite are of interest.
(\mathbb{N}, +) has infinitely many J-classes

Hence locally K-finite varieties are periodic for every K
Not really...

- $(\mathbb{N}, +)$ has infinitely many J-classes
- Hence locally K-finite varieties are **periodic** for every K
- Every nilsemigroup is J-trivial
- Thus, if V is a locally K-finite variety, then nilsemigroups in V are **locally finite**
(\(\mathbb{N}, +\)) has infinitely many \(J\)-classes

Hence locally \(K\)-finite varieties are periodic for every \(K\)

Every nilsemigroup is \(J\)-trivial

Thus, if \(V\) is a locally \(K\)-finite variety, then nilsemigroups in \(V\) are locally finite

Thus, Sapir’s theorem tells us that every locally \(K\)-finite variety of finite axiomatic rank which is not locally finite contains a NAG
If $\mathcal{K} \subseteq \mathcal{K}'$ are Green’s relations, then every locally \mathcal{K}-finite variety of semigroups is locally \mathcal{K}'-finite.
Basic properties

- If $\mathcal{K} \subseteq \mathcal{K}'$ are Green's relations, then every locally \mathcal{K}-finite variety of semigroups is locally \mathcal{K}'-finite.
- Since locally \mathcal{J}-finite varieties must be periodic, a variety of semigroups is locally \mathcal{J}-finite if and only if it is locally \mathcal{D}-finite.
Basic properties

- If $\mathcal{K} \subseteq \mathcal{K}'$ are Green's relations, then every locally \mathcal{K}-finite variety of semigroups is locally \mathcal{K}'-finite.
- Since locally \mathcal{J}-finite varieties must be periodic, a variety of semigroups is locally \mathcal{J}-finite if and only if it is locally \mathcal{D}-finite.
- A variety of semigroups is locally \mathcal{H}-finite if and only if it is both locally \mathcal{R}-finite and locally \mathcal{L}-finite.
Counterexamples

- No other connections hold in general
Counterexamples

- No other connections hold in general
- Let \(n \geq 665 \) be odd and let \(CR_n \) consist of all semigroups which are unions of groups whose exponent divides \(n \). Then \(CR_n \) is locally \(D \)-finite but neither locally \(R \)-finite nor locally \(L \)-finite
Counterexamples

- No other connections hold in general
- Let $n \geq 665$ be odd and let CR_n consist of all semigroups which are unions of groups whose exponent divides n. Then CR_n is locally D-finite but neither locally R-finite nor locally L-finite
- The variety LRO of left regular orthogroups is locally L-finite but not locally R-finite
Results

- We succeeded on characterizing all the locally \mathcal{K}-finite varieties of semigroups \mathbf{V} for every Green’s relation \mathcal{K}.
Results

- We succeeded on characterizing all the locally \mathcal{K}-finite varieties of semigroups \mathcal{V} for every Green’s relation \mathcal{K}
- Forbidden objects are found for each one of the concepts
- Constructions involving NAGs are central in all these results
A semigroup is **completely regular** if it is the union of its subgroups.

Some of the results involve **reductions** to the subvariety \(\text{CR}(V) \) containing all the completely regular semigroups in \(V \).
A semigroup is completely regular if it is the union of its subgroups.

Some of the results involve reductions to the subvariety \(\text{CR}(V) \) containing all the completely regular semigroups in \(V \).

The cases of varieties of periodic completely regular semigroups and periodic semigroups with central idempotents were discussed in depth.
Let G be a group and let H be a subgroup of G. Denote by $L_H(G)$ the union of G with the set $G_H = \{ gH \mid g \in G \}$ of the left cosets of H in G.
Let G be a group and let H be a subgroup of G.

Denote by $L_H(G)$ the union of G with the set $G_H = \{gH \mid g \in G\}$ of the left cosets of H in G.

Extend the multiplication in G to $L_H(G)$ by

\[g_1(g_2H) = g_1g_2H, \quad (g_1H)g_2 = (g_1H)(g_2H) = g_1H \]
Locally finite extensions

- Note that we view the coset gH as different from g even if H is the trivial subgroup
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros
Locally finite extensions

- Note that we view the coset gH as different from g even if H is the trivial subgroup.
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros.
- In the dual way, we define the semigroup

 $$R_H(G) = G \cup \{Hg \mid g \in G\}$$
Locally finite extensions

- Note that we view the coset gH as different from g even if H is the trivial subgroup.
- $L_H(G)$ is a completely regular semigroup in which G is the group of units and G_H is an ideal consisting of left zeros.
- In the dual way, we define the semigroup $R_H(G) = G \cup \{Hg \mid g \in G\}$.
- We say that a semigroup S is a locally finite extension of its ideal J if the Rees quotient S/J is locally finite.
A theorem for \mathcal{H}

Theorem (VSS 2018)

A semigroup variety \mathbf{V} of finite axiomatic rank is locally \mathcal{H}-finite if and only if either \mathbf{V} is locally finite or satisfies the following conditions:

(i) every semigroup in \mathbf{V} is a locally finite extension of a periodic completely regular ideal;
(ii) \mathbf{V} contains none of the semigroups $L_{\mathcal{H}}(G)$, $R_{\mathcal{H}}(G)$, where G is a NAG and H is its subgroup of infinite index.
A theorem for \mathcal{H}

Theorem (VSS 2018)

A semigroup variety \mathbf{V} of finite axiomatic rank is locally \mathcal{H}-finite if and only if either \mathbf{V} is locally finite or satisfies the following conditions:

(i) every semigroup in \mathbf{V} is a locally finite extension of a periodic completely regular ideal;
A theorem for \mathcal{H}

Theorem (VSS 2018)

A semigroup variety \mathbf{V} of finite axiomatic rank is locally \mathcal{H}-finite if and only if either \mathbf{V} is locally finite or satisfies the following conditions:

(i) every semigroup in \mathbf{V} is a locally finite extension of a periodic completely regular ideal;

(ii) \mathbf{V} contains none of the semigroups $L_H(G), R_H(G)$, where G is a NAG and H is its subgroup of infinite index.
Varieties of semigroups are not enough

- Since \((\mathbb{N}, +)\) is a subsemigroup of \((\mathbb{Z}, +)\) which is not a group, groups do not constitute a variety of semigroups.
Varieties of semigroups are not enough

- Since \((\mathbb{N}, +)\) is a subsemigroup of \((\mathbb{Z}, +)\) which is not a group, groups do not constitute a variety of semigroups.
- But they constitute a variety of unary semigroups, where the unary operation is group inversion.
- Similar problems affect other classes containing groups.
Varieties of unary semigroups

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
Varieties of unary semigroups

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
 - the variety **CR** of **completely regular** semigroups
Varieties of unary semigroups

- Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:
 - the variety CR of completely regular semigroups
 - the variety Inv of inverse semigroups
Varieties of unary semigroups

Two important classes of semigroups (close to groups in different ways) constitute also varieties of unary semigroups:

- the variety CR of completely regular semigroups
- the variety Inv of inverse semigroups

Both CR and Inv can be seen as I-varieties: subvarieties of the variety of I-semigroups (defined by the identities $x(yz) = (xy)z$, $(x')' = x$ and $xx'x = x$)
Completely regular semigroups

- The unary operation corresponds to group inversion in the appropriate subgroup
Completely regular semigroups

- The unary operation corresponds to group inversion in the appropriate subgroup
- $S \in \text{CR}$ is completely simple if \mathcal{D} is the universal relation
Completely regular semigroups

- The unary operation corresponds to group inversion in the appropriate subgroup
- \(S \in \text{CR} \) is completely simple if \(D \) is the universal relation
- Completely simple semigroups can be described as Rees matrix semigroups
Basic facts

- $J = D$ and is a congruence on every $S \in \text{CR}$
Basic facts

- \(J = D \) and is a congruence on every \(S \in \text{CR} \)
- \(S/D \) is a semilattice and each \(D \)-class is a completely simple semigroup
Basic facts

- $\mathcal{J} = \mathcal{D}$ and is a congruence on every $S \in \text{CR}$
- S/\mathcal{D} is a semilattice and each \mathcal{D}-class is a completely simple semigroup
- But every semilattice is locally finite
- Hence CR is locally \mathcal{D}-finite (and consequently locally \mathcal{J}-finite)
$L_H(G)$ as a unary semigroup

Let G be a group and let H be a subgroup of G.

We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$.
Let G be a group and let H be a subgroup of G. We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$. We write $L(G) = L\{1\}(G)$.

$L_H(G)$ as a unary semigroup
$L_H(G)$ as a unary semigroup

- Let G be a group and let H be a subgroup of G.
- We make $L_H(G)$ a completely regular unary semigroup by taking inversion in G and $(gH)^{-1} = gH$.
- We write $L(G) = L\{1\}(G)$.
- Dually, we define $R(G)$.

Pedro V. Silva
Local finiteness for Green’s relations
Theorem (SSV 2019)

Let \mathbf{V} be an I-variety of completely regular semigroups.
Theorem (SSV 2019)

Let \mathbf{V} be an I-variety of completely regular semigroups.

(i) \mathbf{V} is locally R-finite if and only if \mathbf{V} contains none of the completely regular semigroups $L(G)$ where G is either \mathbb{Z} or a NAG.
Theorem (SSV 2019)

Let \mathbf{V} be an I-variety of completely regular semigroups.

(i) \mathbf{V} is locally R-finite if and only if \mathbf{V} contains none of the completely regular semigroups $L(G)$ where G is either \mathbb{Z} or a NAG.

(ii) \mathbf{V} is locally L-finite if and only if \mathbf{V} contains none of the completely regular semigroups $R(G)$ where G is either \mathbb{Z} or a NAG.
Theorem (SSV 2019)

Let \mathbf{V} be an I-variety of completely regular semigroups.

(i) \mathbf{V} is locally R-finite if and only if \mathbf{V} contains none of the completely regular semigroups $L(G)$ where G is either \mathbb{Z} or a NAG.

(ii) \mathbf{V} is locally L-finite if and only if \mathbf{V} contains none of the completely regular semigroups $R(G)$ where G is either \mathbb{Z} or a NAG.

(iii) \mathbf{V} is locally H-finite if and only if \mathbf{V} contains none of the completely regular semigroups $L(G), R(G)$ where G is either \mathbb{Z} or a NAG.
Inverse semigroups

A semigroup S is inverse if, for every $a \in S$, there exists a unique a^{-1} satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.
A semigroup S is inverse if, for every $a \in S$, there exists a unique a^{-1} satisfying $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

Up to isomorphism, inverse semigroups are semigroups of partial injective functions closed under composition and inverse functions.

The unary operation is the obvious one.
Basic facts

In any variety of inverse semigroups:

- locally J-finite \iff locally D-finite
Basic facts

In any variety of inverse semigroups:

- locally \mathcal{J}-finite \iff locally \mathcal{D}-finite
- locally \mathcal{H}-finite \iff locally \mathcal{R}-finite \iff locally \mathcal{L}-finite
Adapting a construction of Norman Reilly

- Let G be a nontrivial group
- We define a semigroup with zero $\tilde{N}(G) = G \cup (G \times G) \cup \{0\}$
Adapting a construction of Norman Reilly

1. Let G be a nontrivial group.
2. We define a semigroup with zero $\tilde{N}(G) = G \cup (G \times G) \cup \{0\}$.
3. The multiplication in G is extended to $\tilde{N}(G)$ by:
 \[
 g(h, k) = (gh, k), \quad (h, k)g = (h, kg),
 \]

 \[
 (g, h)(k, \ell) = \begin{cases}
 (g, \ell) & \text{if } h = k \\
 0 & \text{if } h \neq k
 \end{cases}
 \]
Properties of $\tilde{N}(G)$

- $\tilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
Properties of $\tilde{N}(G)$

- $\tilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\tilde{N}(G)$
Properties of $\tilde{N}(G)$

- $\tilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\tilde{N}(G)$
- $\tilde{N}(G)$ has three \mathcal{D}-classes
Properties of $\tilde{N}(G)$

- $\tilde{N}(G)$ is an inverse semigroup (with $(g, h)^{-1} = (h, g)$)
- If G is finitely generated, so is $\tilde{N}(G)$
- $\tilde{N}(G)$ has three D-classes
- If G is infinite, $\tilde{N}(G)$ has infinitely many R-classes
Separating D from R

Theorem (SSV 2019)

Let V be an I-variety of inverse semigroups containing some finitely generated D-finite inverse semigroup which is not R-finite.
Theorem (SSV 2019)

Let \mathbf{V} be an I-variety of inverse semigroups containing some finitely generated D-finite inverse semigroup which is not R-finite. Then \mathbf{V} contains the bicyclic monoid B or $\tilde{N}(\mathbb{Z})$ or $\tilde{N}(G)$ for some NAG G.
All equivalent!

Theorem (SSV 2019)

The following conditions are equivalent for an I-variety V of inverse semigroups:

(i) V is locally H-finite;
(ii) V is locally R-finite;
(iii) V is locally L-finite;
(iv) V is locally D-finite;
(v) V is locally J-finite.

Note that there exist locally D-finite varieties which are not locally finite (e.g. the variety of groups).
All equivalent!

Theorem (SSV 2019)

The following conditions are equivalent for an \(I \)-variety \(V \) of inverse semigroups:

(i) \(V \) is locally \(H \)-finite;
(ii) \(V \) is locally \(R \)-finite;
(iii) \(V \) is locally \(L \)-finite;
(iv) \(V \) is locally \(D \)-finite;
(v) \(V \) is locally \(J \)-finite.
The following conditions are equivalent for an I-variety \mathbf{V} of inverse semigroups:

(i) \mathbf{V} is locally \mathcal{H}-finite;
(ii) \mathbf{V} is locally \mathcal{R}-finite;
(iii) \mathbf{V} is locally \mathcal{L}-finite;
(iv) \mathbf{V} is locally \mathcal{D}-finite;
(v) \mathbf{V} is locally \mathcal{J}-finite.

Note that there exist locally \mathcal{D}-finite varieties which are not locally finite (e.g. the variety of groups).
We need something else

- The preceding results are not enough to provide a characterization by means of forbidden objects.
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$.

Pedro V. Silva Local finiteness for Green’s relations
We need something else

- The preceding results are not enough to provide a characterization by means of forbidden objects.
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$.
- With the help of the infinite square-free word due to Morse and Hedlund, we can build a finitely generated $S \in W_2$ with infinitely many J-classes.
We need something else

- The preceding results are not enough to provide a characterization by means of forbidden objects.
- Let W_2 be the variety of inverse semigroups defined by the identity $x^2 = 0$.
- With the help of the infinite square-free word due to Morse and Hedlund, we can build a finitely generated $S \in W_2$ with infinitely many J-classes.
- However, W_2 does not contain neither B nor $\tilde{N}(\mathbb{Z})$ nor $\tilde{N}(G)$ for any NAG G.
Uniform almost nilsemigroups

A semigroup with zero S is an almost nilsemigroup if some power of each non-idempotent element in S is equal to 0.
Uniform almost nilsemigroups

- A semigroup with zero S is an **almost nilsemigroup** if some power of each non-idempotent element in S is equal to 0.
- S is a **uniform almost nilsemigroup** if such powers can be bounded.
Uniform almost nilsemigroups

- A semigroup with zero S is an almost nilsemigroup if some power of each non-idempotent element in S is equal to 0.
- S is a uniform almost nilsemigroup if such powers can be bounded.

Theorem (SSV 2019)
Let \mathcal{V} be a variety of inverse semigroups. Then \mathcal{V} is locally \mathcal{D}-finite if and only if all uniform almost nilsemigroups in \mathcal{V} are locally finite.
Grazie!

Thank you!