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Modular elements

The olletion of all semigroup varieties forms a lattie with the following

naturally de�ned operations: for varieties X and Y, their join X ∨ Y is the

variety generated by the set-theoretial union of X and Y, while their meet

X ∧ Y oinides with the set-theoretial intersetion of X and Y.

Evans T., The lattie of semigroup varieties, Semigroup Forum, 2 (1971), 1�43.

Shevrin L. N. , Vernikov B. M., Volkov M. V., Latties of semigroup varieties,

Russ. Math. Izv. VUZ, 53, No. 3 (2009), 1�28.

The struture of the lattie SEM is very ompliated. This means, for instane,

that this lattie ontains an anti-isomorphi opy of the partition lattie over a

ountably in�nite set, whene SEM does not satisfy any non-trivial lattie

identity.

Gr�atzer G. Lattie Theory: Foundation. Birkh�auser, Springer Basel AG. (2011)

B.M. Vernikov, Speial elements in latties of semigroup varieties, Ata Si.

Math. (Szeged), 81:1-2 (2015), 79-109.
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Modular elements

An element x of a lattie L is alled modular if

∀ y, z : y ≤ z → (x ∨ y) ∧ z = (x ∧ z) ∨ y.

s

s

s

s

s

x

y

z

This on�guration is impossible
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Modular elements in the lattie SEM

Reall that a semigroup variety is alled a nil-variety if it onsists of

nilsemigroups or, equivalently, satis�es an identity of the form x

n ≈ 0 for some

natural n.

Proposition 1 (J.Je�zek and R.N.MKenzie - 1993; V.Yu.Shaprynski

�

i - 2012)

If V is a modular element of the lattie SEM then either V = SEM or

V = M ∨N where M is one of the varieties T or SL, while N is a nil-variety.

u ≈ v � substitutive if the words u and v depend on the same letters and v

may be obtained from u by renaming of letters

w · x ≈ x · w ≈ w where the letter x does not our in the word w � w ≈ 0 �

0-redued identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by 0-redued and substitutive

identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Je�zek and

R.N.MKenzie - 1993)

Every 0-redued semigroup variety is modular.
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A permutational identity of length 2

A permutational identity � an identity of the type

x

1

x

2

. . . x
n

≈ x

1πx2π . . . x
nπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}.

Proposition 4 (B.M.Vernikov - 2007)

A ommutative semigroup variety V is a modular element of the lattie SEM if

and only if V = M ∨ N where M is one of the varieties T or SL, while N

satis�es the identities x

2

y = 0 and xy = yx.
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A permutational identity of length 3

A permutational identity � an identity of the type

x

1

x

2

. . . x
n

≈ x

1πx2π . . . x
nπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}.

Proposition 5 (D.V.Skokov and B.M.Vernikov - 2019)

A semigroup variety V satisfying a permutational identity of length 3 is a

modular element in the lattie SEM if and only if V = M ∨N where M is one

of the varieties T or SL, while the variety N satis�es one of the following

identity systems:

a) xyz = zyx, x2y = 0;

b) xyz = yzx, x2y = 0;

) xyz = yxz, xyzt = xzty, xy2 = 0;

d) xyz = xzy, xyzt = yzxt, x2y = 0.
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Modular elements in the lattie SEM

Stab
V

(u) = {g ∈ S

n

| u ≈ g(u) in V}

Proposition 6

If a nil-variety of semigroup V is a modular element of the lattie SEM and V

does not satisfy an identity u ≈ 0 then Stab
V

(u) is a modular element of the

Sub(S
n

).
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The lattie Sub(S
3

)

s s

s

s

s s
T

12

T

13

T

23

A

3

S

3

T
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The lattie Sub(S
4

)

s

s s s s s s s s s s s s s

s s s s s s s s s s s

s s s s

s

A

4

S

4

V

4

I(12)(34) I(13)(24) I(14)(23)

T
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Modular elements in the lattie SEM

u ≤ v i� u = aξ(v)b where a, b ∈ F

1

and ξ ∈ End(F)

Theorem

A nil-variety of semigroups V is a modular element of the lattie SEM if and

only if the following holds:

a) V may be given by 0-redued and substitutive identities only;

b) if V does not satisfy an identity u ≈ 0 then Stab
V

(u) is a modular element

of the Sub(S
n

);

) there are no unomparable words u and v suh that con(u) = con(v) and

Stab
V

(u), Stab
V

(v) ∈ {T
12

,T
23

,T
13

};

Stab
V

(u) ∈ {T
12

,T
23

,T
13

},Stab
V

(v) = A

3

;

Stab
V

(u), Stab
V

(v) ∈ {I(12)(34), I(13)(24), I(14)(23)};

Stab
V

(u) ∈ {I(12)(34), I(13)(24), I(14)(23)}, StabV(v) = A

4

.
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Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5

Subase 1.1: Stab
V

(u) = S

n

Subase 1.1.1: u = x

1

x

2

. . . x
n

V

u,S
n

|= x

1

x

2

. . . x
n

≈ g(x
1

x

2

. . . x
n

) (g ∈ S

n

),

x

2

1

x

2

. . . x
n−1

≈ 0
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Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5

Subase 1.1: Stab
V

(u) = S

n

Subase 1.1.1: u = x

1

x

2

. . . x
n

Subase 1.1.2: u = (x
1

x

2

. . . x
n

)k

V

u,S
n

|= (x
1

x

2

. . . x
n

)k ≈ g((x
1

x

2

. . . x
n

)k) (g ∈ S

n

),

(x
1

x

2

. . . x
n

)kx
n+1 ≈ g((x

1

x

2

. . . x
n

)kx
n+1) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)
k ≈ g(x

n+1(x1x2 . . . xn)
k) (g ∈ S

n+1),

x

n+1(x1x2 . . . xn)
k

x

n+2 ≈ g(x
n+1(x1x2 . . . xn)

k

x

n+2) (g ∈ S

n+2),

(x
1

x

2

. . . x
n

)kx
n+1xn+2 ≈ 0,

x

n+1xn+2(x1x2 . . . xn)
k ≈ 0
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Modular elements in the lattie SEM
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Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5
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V

(u) = S

n

Subase 1.1.1: u = x

1

x

2

. . . x
n

Subase 1.1.2: u = (x
1

x

2

. . . x
n

)k

Subase 1.1.3: u = w(x
1

x

2

. . . x
n−1

)x
n

Subase 1.1.4: u = x

1

w(x
2

. . . x
n

)

Subase 1.1.5: u = x

1

w(x
2

. . . x
n−1

)x
n

Subase 1.1.6: u = w(x
1

x

2

. . . x
n

)
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Modular elements in the lattie SEM
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Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5
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V

(u) = S

n

Subase 1.2: Stab
V

(u) = A

n

Subase 1.2.1: u = x

1

x

2

. . . x
n

Subase 1.2.2: u = (x
1

x

2

. . . x
n

)k

Subase 1.2.3: u = w(x
1

x

2

. . . x
n−1

)x
n

Subase 1.2.4: u = x

1

w(x
2

. . . x
n

)

Subase 1.2.5: u = x

1

w(x
2

. . . x
n−1

)x
n

Subase 1.2.6: u = w(x
1

x

2

. . . x
n

)
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Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5

Subase 1.1: Stab
V

(u) = S

n

Subase 1.2: Stab
V

(u) = A

n

Subase 1.2.1: u = x

1

x

2

. . . x
n

Subase 1.2.2: u = (x
1

x

2

. . . x
n

)k

Subase 1.2.3: u = w(x
1

x

2

. . . x
n−1

)x
n

Subase 1.2.4: u = x

1

w(x
2

. . . x
n

)

Subase 1.2.5: u = x

1

w(x
2

. . . x
n−1

)x
n

Subase 1.2.6: u = w(x
1

x

2

. . . x
n

)

Dmitry Skokov and Viaheslav Shaprynskii On modular elements of the lattie of semigroup varieties



Modular elements in the lattie SEM

Case 1: n = | con(u)| ≥ 5

Subase 1.1: Stab
V

(u) = S

n

Subase 1.2: Stab
V

(u) = A

n

Case 2: n = | con(u)| = 4

Case 3: n = | con(u)| = 3

Case 4: n = | con(u)| = 2
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Modular elements in the lattie SEM

u ≤ v i� u = aξ(v)b where a, b ∈ F

1

and ξ ∈ End(F)

Theorem

A nil-variety of semigroups V is a modular element of the lattie SEM if and

only if the following holds:

a) V may be given by 0-redued and substitutive identities only;

b) if V does not satisfy an identity u ≈ 0 then Stab
V

(u) is a modular element

of the Sub(S
n

);

) there are no unomparable words u and v suh that con(u) = con(v) and

Stab
V

(u), Stab
V

(v) ∈ {T
12

,T
23

,T
13

};

Stab
V

(u) ∈ {T
12

,T
23

,T
13

},Stab
V

(v) = A

3

;

Stab
V

(u), Stab
V

(v) ∈ {I(12)(34), I(13)(24), I(14)(23)};

Stab
V

(u) ∈ {I(12)(34), I(13)(24), I(14)(23)}, StabV(v) = A

4

.
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