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Modular elements

The collection of all semigroup varieties forms a lattice with the following

naturally defined operations: for varieties X and Y, their join X V'Y is the

variety generated by the set-theoretical union of X and Y, while their meet
X A'Y coincides with the set-theoretical intersection of X and Y.
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The structure of the lattice SEM is very complicated. This means, for instance,
that this lattice contains an anti-isomorphic copy of the partition lattice over a
countably infinite set, whence SEM does not satisfy any non-trivial lattice
identity.
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Modular elements

An element x of a lattice L is called modular if

Vyz: y<z—(xVy)Az=(xAz)Vy.

This configuration is impossible
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Modular elements in the lattice SEM

Recall that a semigroup variety is called a nil-variety if it consists of
nilsemigroups or, equivalently, satisfies an identity of the form x" ~ 0 for some
natural n.
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Modular elements in the lattice SEM

Recall that a semigroup variety is called a nil-variety if it consists of
nilsemigroups or, equivalently, satisfies an identity of the form x" ~ 0 for some
natural n.

Proposition 1 (J.Jezek and R.N.McKenzie - 1993; V.Yu.Shaprynskii - 2012)

IfV is a modular element of the lattice SEM then either V. = SEM or
V = MV N where M is one of the varieties T or SL, while N is a nil-variety.
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natural n.

Proposition 1 (J.Jezek and R.N.McKenzie - 1993; V.Yu.Shaprynskii - 2012)

IfV is a modular element of the lattice SEM then either V. = SEM or
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u ~ v — substitutive if the words u and v depend on the same letters and v
may be obtained from u by renaming of letters
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Modular elements in the lattice SEM

Recall that a semigroup variety is called a nil-variety if it consists of
nilsemigroups or, equivalently, satisfies an identity of the form x" ~ 0 for some
natural n.

Proposition 1 (J.Jezek and R.N.McKenzie - 1993; V.Yu.Shaprynskii - 2012)

IfV is a modular element of the lattice SEM then either V. = SEM or
V = MV N where M is one of the varieties T or SL, while N is a nil-variety.

u ~ v — substitutive if the words u and v depend on the same letters and v
may be obtained from u by renaming of letters

W - x & x-w & w where the letter x does not occur in the word w —w =~ 0 —
0-reduced identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by O-reduced and substitutive
identities only.
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IfV is a modular element of the lattice SEM then either V. = SEM or
V = MV N where M is one of the varieties T or SL, while N is a nil-variety.

u ~ v — substitutive if the words u and v depend on the same letters and v
may be obtained from u by renaming of letters

W - x & x-w & w where the letter x does not occur in the word w —w =~ 0 —
0-reduced identity.

Proposition 2 (B.M.Vernikov - 2007)

A modular nil-variety of semigroups may be given by O-reduced and substitutive
identities only.

Proposition 3 (B.M.Vernikov and M.V.Volkov - 1988; J.Jezek and
R.N.McKenzie - 1993)

Every O-reduced semigroup variety is modular.
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A permutational identity of length 2

A permutational identity — an identity of the type
X1X2 ... Xp R X17xX27 « .+ - Xn7r

where 7 is a non-trivial permutation on the set {1,2,...,n}.

Proposition 4 (B.M.Vernikov - 2007)

A commutative semigroup variety V is a modular element of the lattice SEM if
and only if V. = M V N where M is one of the varieties T or SL, while N
satisfies the identities X’y = 0 and xy = yx.

Dmitry Skokov and Viacheslav Shaprynskii On modular elements of the lattice of semigroup varieties



A permutational identity of length 3

A permutational identity — an identity of the type
X1X2 ... Xpn = X174X27 « « « Xn7w

where 7 is a non-trivial permutation on the set {1,2,...,n}.

Proposition 5 (D.V.Skokov and B.M.Vernikov - 2019)

A semigroup variety \I satisfying a permutational identity of length 3 is a
modular element in the lattice SEM if and only if V.= M V N where M s one
of the varieties T or SL, while the variety N satisfies one of the following
identity systems:

a) xyz = zyx, X’y = 0;
b) xyz = yzx, Xy = 0;
c) Xyz = yxz, xyzt = xzty, xy2 =0;
d) Xyz = xzy, xyzt = yzxt, x2y =0.
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Modular elements in the lattice SEM

Staby(u) = {g € Sn |u =~ g(u) in V}
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Modular elements in the lattice SEM

Staby(u) = {g € Sn |u =~ g(u) in V}

Proposition 6

If a nil-variety of semigroup V is a modular element of the lattice SEM and V
does not satisfy an identity u = 0 then Staby(u) is a modular element of the
Sub(Sn).
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Modular elements in the lattice SEM

u < v iff u = a¢(v)b where a,b € F! and ¢ € End(F)

Theorem

A nil-variety of semigroups V is a modular element of the lattice SEM if and
only if the following holds:

a) V may be given by 0-reduced and substitutive identities only;

b) if V does not satisfy an identity u =~ 0 then Staby(u) is a modular element
of the Sub(S,);

c) there are no uncomparable words u and v such that con(u) = con(v) and

Staby (u), Staby (v) € {T12, T23, T13};

Stabv(u) S {T12, Tos, T13}, Stabv(v) = Aj3;

Staby (u), Staby (v) € {l(12)(34), |(13)(24), |14)(23) }

Staby (u) € {l(12)(34), l(13)(24), l(14)(23) }, Stabv (v) = A4

<

¢ ¢ ¢
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Dmitry Skokov and Viacheslav Shaprynskii On modular elements of the lattice of semigroup varieties



Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa

Subcase 1.1.1: u=x1X2...%n
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa

Subcase 1.1.1: u=x1X2...%n

Vus, E X1X2 . .. Xn A g(Xx1X2 ... Xa) (g € Sn),

2
X1X2 ... Xn—1 ~ 0
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa

Subcase 1.1.1: u=x1X2...%n
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa
Subcase 1.1.1: u = XxiX2...Xn
Subcase 1.1.2: u = (xix2...xn)"
Vus, = (xaxz .. .xn)" ~ g((xaxz .- xn)) (g € Sn),
(x1x2 .. .xn) *nt1 = g((x1xz .. n)kxn+1) (g € Snt1),
Xot1 (X1X2 - - Xn)* A g(Xnt1(x1%2 - %n)*) (g € Sas1),
Xnr1(X1X2 + - X0 ) X2 & g(Xnr1(X1X2 - - - Xn)*Xns2) (8 € Snt2),
(x1x2 .. .xn)kxn+1xn+2 ~ 0,

Xnt+1Xnt2(X1x2 . . .x,,)k ~0
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) =S,

Subcase 1.1.1: u = x1X2...%n

Subcase 1.1.2: u = (xix2...Xn)"

Dmitry Skokov and Viacheslav Shaprynskii On modular elements of the lattice of semigroup varieties



Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) =S,

Subcase 1.1.1: u=xixX2...Xn
Subcase 1.1.2: u = (xix2...xa)"
Subcase 1.1.3: u = w(x1X2 . . . Xp—1)Xn

Subcase 1.1.4: u = x1w(xz2...xn)

Subcase 1.1.5: u = x3w(X2 . . . Xp—1)Xn

Subcase 1.1.6: u = w(x1x2...xn)
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) =S,
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) =S,

Subcase 1.2: Staby(u) = A,

Subcase 1.2.1: u=xix2...Xn
Subcase 1.2.2: u = (xix2...Xn)"
Subcase 1.2.3: u = w(x1xX2...Xn—1)Xn

Subcase 1.2.4: u = x3w(xz2...xn)

Subcase 1.2.5: u = x3w(X2 . . . Xp—1)Xn

Subcase 1.2.6: u = w(x1xz2...xn)
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = Sa

Subcase 1.2: Staby(u) = A,
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Modular elements in the lattice SEM

Case 1: n=|con(u)| >5

Subcase 1.1: Staby(u) = S
Subcase 1.2: Staby(u) = A,

Case 2: n=|con(u)| =4
Case 3: n = |con(u)| =3

Case 4: n = |con(u)| =2
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Modular elements in the lattice SEM

u < v iff u = a¢(v)b where a,b € F! and ¢ € End(F)

Theorem

A nil-variety of semigroups V is a modular element of the lattice SEM if and
only if the following holds:

a) V may be given by 0-reduced and substitutive identities only;

b) if V does not satisfy an identity u =~ 0 then Staby(u) is a modular element
of the Sub(S,);

c) there are no uncomparable words u and v such that con(u) = con(v) and

Staby (u), Staby (v) € {T12, T23, T13};

Stabv(u) S {T12, Tos, T13}, Stabv(v) = Aj3;

Staby (u), Staby (v) € {l(12)(34), |(13)(24), |14)(23) }

Staby (u) € {l(12)(34), l(13)(24), l(14)(23) }, Stabv (v) = A4

<

¢ ¢ ¢
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