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Monoid algebras

M - �nite monoid.

k - �eld.

kM - monoid algebra.

kM = {
∑

kimi | ki ∈ k mi ∈ M}

kM is usually not a semisimple algebra (even if k = C).

Question

Given an interesting monoid M, try to �nd properties\invariants of kM
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Order-related monoids

POn. The monoid of all order-preserving partial functions on
{1, . . . , n}.

(∀x , y ∈ dom f , x ≤ y =⇒ f (x) ≤ f (y))

PFn. The monoid of all order-decreasing partial functions on
{1, . . . , n}. (∀x ∈ dom f f (x) ≤ x)

PCn = PFn ∩POn. The partial Catalan Monoid.

Invariant = Quiver presentation.(Application: Enables construction of
projective resolutions)

Some facts

POn,PFn,PCn - are all H-trivial. (In fact, PFn and PCn are
L-trivial).

PFn
∼= Fn+1 (Umar 1992)
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Outline of talk

Presentations of a monoid, category and a k−linear category.

De�nition of Quiver presentation of an algebra.

Obtaining a Quiver presentation for kPOn,kPFn,kPCn. (The main
idea).
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Monoid presentation

A - �nite set (of generators).

A∗−free monoid.

R - relation on A∗.

We say that 〈A | R〉 is a presentation of a monoid M if M ' A∗/ρ
where ρ is the minimal congruence on A∗ which contains R .
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Category presentation

Q - �nite graph (of generators).

Q∗− free category. Objects - vertices of Q. Morphisms - paths in Q.

De�nition

A category relation R on a category E is a relation on the
morphisms of E with the property that m1Rm2 implies that m1 and
m2 have the same domain and range.

R is called a category congruence if R is an equivalence relation and
m1Rm2 and n1Rn2 implies m1n1Rm2n2 where the composition is
de�ned.

The quotient E/R is de�ned in the natural way.

R - category relation on Q∗.

We say that 〈Q | R〉 is a presentation of a category E if E ' Q∗/ρ
where ρ is the minimal congruence on Q∗ which contains R .
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k-linear Categories

De�nition

A k-linear category, is a category such that every hom-set is a k-vector
space and the composition is compatible with vector space operations.

Example

The category of k- vector spaces and linear transformations.

De�nition

A category relation R on a k -linear category L is called a k-linear
category congruence if it is a category congruence and also a vector
space congruence on every hom set.
Again, L/R is de�ned in the natural way.
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k-linear Category presentation

Let E be a category, we can de�ne the linearization Lk[E ]. The categories
Lk[E ] and E have the same objects, and every hom-set Lk[E ](a, b) is the
k-vector space with basis E (a, b). Composition is de�ned naturally.

.

Q - �nite graph (of generators).

Lk[Q
∗] - free k- linear category.

R - relation on Lk[Q
∗].

We say that 〈Q | R〉 is a presentation of a k-linear category L if
L ' Lk[Q

∗]/ρ where ρ is the minimal congruence on Lk[Q
∗] which

contains R .
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Quiver presentation of an algebra

Let A be a �nite dimensional k- algebra. Let {e1, . . . , en} be a
complete set of primitive orthogonal idempotents.

(
n∑

i=1

ei = 1A, eiej = 0, eiAei is a local algebra)

De�ne a k - linear category L (A) in the following way.
Objects: {e1, . . . , en}.
Morphisms: L (A)(ei , ej) = {a ∈ A | ejaei = a}. Composition is the
product in A.

De�nition (Inaccurate!)

A quiver presentation of A is a presentation of the k - linear category
L (A).
(Neglected Issues: Precise de�nition of the quiver (generators). Morita
Equivalence.)
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Equivalence.)
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Big picture

Monoid Algebra

Category k - linear category

M −→ kM

L (A)x
A

E −→ Lk[E ]

?
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Categorical approach

De�ne a category En as follows. Objects: subsets of {1, . . . , n}.
Morphisms: En(A,B) = {f : A→ B | f onto}

EOn - subcategory of En with only of order-preserving functions.

EFn - subcategory of En with only of order-decreasing functions.

ECn - subcategory of En with only of order-preserving and
order-decreasing functions.

EOn, EFn, ECn are locally trivial (every endomorphism is an identity).

Proposition (IS 2016)

There is an isomorphism of algebras

kPOn ' k EOn, kPFn ' k EFn, kPCn ' k ECn

Remark

Similar result holds for many other �nite semigroups.(Solomon, Steinberg,
Guo,Chen, IS, Wang)
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Big picture #2

Monoid Algebra

Category k - linear category

M −→ kM

L (A)x
A

E −→ Lk[E ]

EOn,EFn,ECnx
POn,PFn,PCn
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M −→ kM

L (A)x
A

E −→ Lk[E ]
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POn,PFn,PCn

Proposition

This diagram is �commutative� for POn, PFn and PCn.

Lk[EOn] ' L (kPOn), Lk[EFn] ' L (kPFn), Lk[ECn] ' L (kPCn).
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Big picture #3

Lemma

If 〈Q | R〉 is a (category) presentation of E then it is also a (k- linear
category) presentation of Lk[E ].

Monoid Algebra

Category k - linear category

M −→ kM

L (A)x
A

E −→ Lk[E ]

EOn,EFn,ECnx
POn,PFn,PCn
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Quiver presentation

So it is left only to �nd a (category) presentation for EOn, EFn, ECn.

This is doable!(But not in a 20 minutes talk).

Remark

Using this approach we can obtain also a description of other invariants
such as the Cartan matrix, Loewy length etc..
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Thank you!
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Appendix: Results #1

Theorem (IS)

Let M = POn . Denote by dk
i the morphism corresponding to the unique

order preserving onto function f : [k + 1]→ [k] such that f (i) = f (i + 1)
then

dk−1
i dk

j = dk−1
j−1 d

k
i (2 ≤ k ≤ n − 1, 1 ≤ i < j ≤ k)

is a quiver presentation for kPOn.

Theorem (IS)

LetM = PCn. Denote by dA
i the morphism whose domain is A and i ∈ A is

its unique element such that dA
i (i) = i − 1. Then

d
Aj

i dA
j = dAi

j dA
i (j > i + 1, i , j ∈ A)

d
Ai+1

i dA
i+1 = d

(Ai )i+1

i dAi
i+1d

A
i (i , i + 1 ∈ A)

is a quiver presentation of kPCn.
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Appendix: Results #2

Theorem (IS)

Let M = PFn. Denote by dA
i ,j is the morphism whose domain is A and

j ∈ A is its unique element such that dA
i ,j(j) = i 6= j . Then

d
As,t

i ,j dA
s,t = d

Ai,j
s,t dA

i ,j (s > j , t, j ∈ A)

d
As,t

i ,j dA
s,t = d

Ai,t

i ,j d
Ai,j

j ,t dA
i ,j (s = j , t, j ∈ A)

d
As,t

i ,j dA
s,t = d

Ai,t

s,j d
Ai,j

j ,t dA
i ,j (i < s < j , s, t, j ∈ A)

d
As,t

i ,j dA
s,t = d

Ai,t

s,j d
Ai,j

j ,t dA
i ,j (s ≤ i , t, j ∈ A)

d
As,t

i ,j dA
s,t = d

Ai,t

s,j d
Ai,j

j ,t d
As,j

i ,s dA
s,j (i < s < j , t, j ∈ A, s /∈ A)

d
(Ai,t)s,i
i ,j d

Ai,t

s,i dA
i ,t = d

Ai,t

s,j d
Ai,j

j ,t dA
i ,j (s < i < j < t, t, j ∈ A, i /∈ A)

is a quiver presentation of kPFn.
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