Quiver presentations for algebras of some order-related monoids of partial functions

Itamar Stein

Shamoon College of Engineering

SandGal 2019, Cremona June 12, 2019

- M finite monoid.
- 🛛 field.
- $\Bbbk M$ monoid algebra.

$$\mathbb{k}M = \{\sum k_i m_i \mid k_i \in \mathbb{k} \quad m_i \in M\}$$

• $\Bbbk M$ is usually not a semisimple algebra (even if $\Bbbk = \mathbb{C}$).

Question

Given an interesting monoid M, try to find properties \invariants of $\Bbbk M$

・ 伺 ト ・ ヨ ト ・ ヨ ト

• \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$.

- 4 間 と 4 画 と 4 画 と

Itamar Stein (SCE)

• \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$

・ 伺 ト ・ ヨ ト ・ ヨ ト

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$.

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.
- Invariant = Quiver presentation.

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.
- Invariant = Quiver presentation.(Application: Enables construction of projective resolutions)

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.
- Invariant = Quiver presentation.(Application: Enables construction of projective resolutions)

Some facts

• $\mathcal{PO}_n, \mathcal{PF}_n, \mathcal{PC}_n$ - are all *H*-trivial.

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.
- Invariant = Quiver presentation.(Application: Enables construction of projective resolutions)

Some facts

• $\mathcal{PO}_n, \mathcal{PF}_n, \mathcal{PC}_n$ - are all *H*-trivial. (In fact, \mathcal{PF}_n and \mathcal{PC}_n are *L*-trivial).

- \mathcal{PO}_n . The monoid of all order-preserving partial functions on $\{1, \ldots, n\}$. $(\forall x, y \in \text{dom } f, x \leq y \implies f(x) \leq f(y))$
- \mathcal{PF}_n . The monoid of all order-decreasing partial functions on $\{1, \ldots, n\}$. $(\forall x \in \text{dom } f \quad f(x) \leq x)$
- $\mathcal{PC}_n = \mathcal{PF}_n \cap \mathcal{PO}_n$. The partial Catalan Monoid.
- Invariant = Quiver presentation.(Application: Enables construction of projective resolutions)

Some facts

- $\mathcal{PO}_n, \mathcal{PF}_n, \mathcal{PC}_n$ are all *H*-trivial. (In fact, \mathcal{PF}_n and \mathcal{PC}_n are *L*-trivial).
- $\mathcal{PF}_n \cong \mathcal{F}_{n+1}$ (Umar 1992)

- 4 間 と 4 画 と 4 画 と

 \bullet Presentations of a monoid, category and a $\Bbbk-{\sf linear}$ category.

3

イロト イポト イヨト

- \bullet Presentations of a monoid, category and a $\Bbbk-{\sf linear}$ category.
- Definition of Quiver presentation of an algebra.

- 4 周 ト 4 ヨ ト 4 ヨ ト

- Presentations of a monoid, category and a k-linear category.
- Definition of Quiver presentation of an algebra.
- Obtaining a Quiver presentation for $\mathbb{k} \mathcal{PO}_n, \mathbb{k} \mathcal{PF}_n, \mathbb{k} \mathcal{PC}_n$.

- Presentations of a monoid, category and a \Bbbk -linear category.
- Definition of Quiver presentation of an algebra.
- Obtaining a Quiver presentation for \(\mathbb{k} \mathcal{P} \mathcal{O}_n, \(\mathbb{k} \mathcal{P} \mathcal{F}_n, \(\mathbb{k} \mathcal{P} \mathcal{C}_n, \(\mathbb{k} \mathcal{P} \mathcal{L}_n, \(\mathbf{k} \mathcal{P} \mathcal{P}

・ 伺 ト ・ ヨ ト ・ ヨ ト

- A finite set (of generators).
- A^* -free monoid.
- R relation on A^* .

< 🔁 🛌

- ∢ ∃ →

- A finite set (of generators).
- A*-free monoid.
- R relation on A^* .
- We say that $\langle A | R \rangle$ is a presentation of a monoid M if $M \simeq A^* / \rho$ where ρ is the minimal congruence on A^* which contains R.

Itamar Stein (SCE)

• Q - finite graph (of generators).

3

・ロト ・聞き ・ヨト ・ヨト

Itamar Stein (SCE)

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

マ 伺 とう きょう くらう

Itamar Stein (SCE)

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

マ 伺 とう きょう くらう

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

Itamar Stein (SCE)

• A category relation R on a category E is a relation on the morphisms of E with the property that $m_1 R m_2$ implies that m_1 and m_2 have the same domain and range.

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

- A category relation R on a category E is a relation on the morphisms of E with the property that $m_1 R m_2$ implies that m_1 and m_2 have the same domain and range.
- *R* is called a **category congruence** if *R* is an equivalence relation and m_1Rm_2 and n_1Rn_2 implies $m_1n_1Rm_2n_2$ where the composition is defined.

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

- A category relation R on a category E is a relation on the morphisms of E with the property that $m_1 R m_2$ implies that m_1 and m_2 have the same domain and range.
- *R* is called a **category congruence** if *R* is an equivalence relation and m_1Rm_2 and n_1Rn_2 implies $m_1n_1Rm_2n_2$ where the composition is defined.
- The quotient *E*/*R* is defined in the natural way.

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

- A category relation R on a category E is a relation on the morphisms of E with the property that $m_1 R m_2$ implies that m_1 and m_2 have the same domain and range.
- *R* is called a **category congruence** if *R* is an equivalence relation and m_1Rm_2 and n_1Rn_2 implies $m_1n_1Rm_2n_2$ where the composition is defined.
- The quotient E/R is defined in the natural way.
- R category relation on Q^* .

- Q finite graph (of generators).
- Q^* free category. Objects vertices of Q. Morphisms paths in Q.

Definition

- A category relation R on a category E is a relation on the morphisms of E with the property that $m_1 R m_2$ implies that m_1 and m_2 have the same domain and range.
- *R* is called a **category congruence** if *R* is an equivalence relation and m_1Rm_2 and n_1Rn_2 implies $m_1n_1Rm_2n_2$ where the composition is defined.
- The quotient E/R is defined in the natural way.
- R category relation on Q^* .
- We say that $\langle Q \mid R \rangle$ is a presentation of a category E if $E \simeq Q^* / \rho$ where ρ is the minimal congruence on Q^* which contains R.

Definition

A k-linear category, is a category such that every hom-set is a k-vector space and the composition is compatible with vector space operations.

- **4 @ N 4 B N**

Definition

A k-linear category, is a category such that every hom-set is a k-vector space and the composition is compatible with vector space operations.

Example

The category of \Bbbk - vector spaces and linear transformations.

- **((**) **) ((**) **)**

Definition

A k-linear category, is a category such that every hom-set is a k-vector space and the composition is compatible with vector space operations.

Example

The category of \Bbbk - vector spaces and linear transformations.

Definition

A category relation R on a \Bbbk -linear category L is called a \Bbbk -linear category congruence if it is a category congruence and also a vector space congruence on every hom set.

Definition

A k-linear category, is a category such that every hom-set is a k-vector space and the composition is compatible with vector space operations.

Example

The category of \Bbbk - vector spaces and linear transformations.

Definition

A category relation R on a \Bbbk -linear category L is called a \Bbbk -linear category congruence if it is a category congruence and also a vector space congruence on every hom set. Again, L/R is defined in the natural way.

イロト イポト イヨト イヨト

Let *E* be a category, we can define the **linearization** $L_{\Bbbk}[E]$. The categories $L_{\Bbbk}[E]$ and *E* have the same objects, and every hom-set $L_{\Bbbk}[E](a, b)$ is the \Bbbk -vector space with basis E(a, b). Composition is defined naturally.

• Q - finite graph (of generators).

- Q finite graph (of generators).
- $L_{\mathbb{k}}[Q^*]$ free \mathbb{k} linear category.

- Q finite graph (of generators).
- $L_{\Bbbk}[Q^*]$ free \Bbbk linear category.
- R relation on $L_{\Bbbk}[Q^*]$.

- Q finite graph (of generators).
- $L_{\Bbbk}[Q^*]$ free \Bbbk linear category.
- R relation on $L_{\Bbbk}[Q^*]$.
- We say that $\langle Q \mid R \rangle$ is a presentation of a k-linear category L if $L \simeq L_{\Bbbk}[Q^*]/\rho$ where ρ is the minimal congruence on $L_{\Bbbk}[Q^*]$ which contains R.

Quiver presentation of an algebra

Itamar Stein (SCE)

Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Itamar Stein (SCE)

Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.
 (∑_{i=1}ⁿ e_i = 1_A, e_ie_j = 0, e_iAe_i is a local algebra)

Itamar Stein (SCE)

- Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.
 (∑_{i=1}ⁿe_i = 1_A, e_ie_j = 0, e_iAe_i is a local algebra)
- Define a k linear category L(A) in the following way.
 Objects: {e₁,..., e_n}.
 Morphisms: L(A)(e_i, e_j) = {a ∈ A | e_jae_i = a}. Composition is the product in A.

- Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.
 (∑_{i=1}ⁿe_i = 1_A, e_ie_j = 0, e_iAe_i is a local algebra)
- Define a k linear category L(A) in the following way.
 Objects: {e₁,..., e_n}.
 Morphisms: L(A)(e_i, e_j) = {a ∈ A | e_jae_i = a}. Composition is the product in A.

Definition (Inaccurate!)

Itamar Stein (SCE)

イロト イポト イヨト イヨト

- Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.
 (∑_{i=1}ⁿe_i = 1_A, e_ie_j = 0, e_iAe_i is a local algebra)
- Define a k linear category L(A) in the following way.
 Objects: {e₁,..., e_n}.
 Morphisms: L(A)(e_i, e_j) = {a ∈ A | e_jae_i = a}. Composition is the product in A.

Definition (Inaccurate!)

A quiver presentation of A is a presentation of the \Bbbk - linear category $\mathscr{L}(A)$.

(日) (四) (日) (日) (日)

- Let A be a finite dimensional k- algebra. Let {e₁,..., e_n} be a complete set of primitive orthogonal idempotents.
 (∑_{i=1}ⁿe_i = 1_A, e_ie_j = 0, e_iAe_i is a local algebra)
- Define a k linear category L(A) in the following way.
 Objects: {e₁,..., e_n}.
 Morphisms: L(A)(e_i, e_j) = {a ∈ A | e_jae_i = a}. Composition is the product in A.

Definition (Inaccurate!)

A quiver presentation of A is a presentation of the \Bbbk - linear category $\mathscr{L}(A)$. (Neglected Issues: Precise definition of the quiver (generators). Morita Equivalence.)

イロト イポト イヨト イヨト

Category

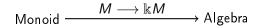
 \Bbbk - linear category

Monoid

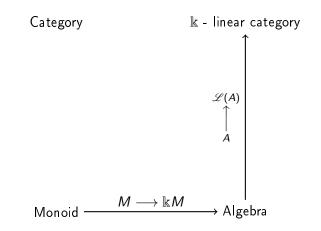
Algebra

Category

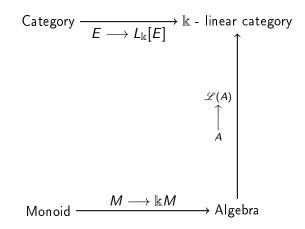
 \Bbbk - linear category



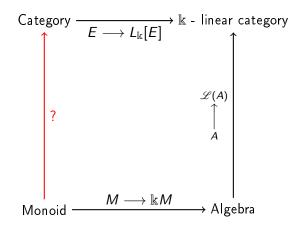
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()



< 🔁 📐

Itamar Stein (SCE)

 Define a category *E_n* as follows. Objects: subsets of {1,..., n}. Morphisms: *E_n(A, B)* = {*f* : *A* → *B* | *f* onto}

イロト イピト イヨト

Itamar Stein (SCE)

- Define a category \mathcal{E}_n as follows. Objects: subsets of $\{1, \ldots, n\}$. Morphisms: $\mathcal{E}_n(A, B) = \{f : A \to B \mid f \text{ onto}\}$
- \mathcal{EO}_n subcategory of \mathcal{E}_n with only of order-preserving functions.

・ 問 と く ヨ と く ヨ と

Itamar Stein (SCE)

- Define a category \mathcal{E}_n as follows. Objects: subsets of $\{1, \ldots, n\}$. Morphisms: $\mathcal{E}_n(A, B) = \{f : A \to B \mid f \text{ onto}\}$
- \mathcal{EO}_n subcategory of \mathcal{E}_n with only of order-preserving functions.
- \mathcal{EF}_n subcategory of \mathcal{E}_n with only of order-decreasing functions.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Itamar Stein (SCE)

- Define a category \mathcal{E}_n as follows. Objects: subsets of $\{1, \ldots, n\}$. Morphisms: $\mathcal{E}_n(A, B) = \{f : A \to B \mid f \text{ onto}\}$
- \mathcal{EO}_n subcategory of \mathcal{E}_n with only of order-preserving functions.
- \mathcal{EF}_n subcategory of \mathcal{E}_n with only of order-decreasing functions.
- *EC_n* subcategory of *E_n* with only of order-preserving and order-decreasing functions.

Itamar Stein (SCE)

- Define a category \mathcal{E}_n as follows. Objects: subsets of $\{1, \ldots, n\}$. Morphisms: $\mathcal{E}_n(A, B) = \{f : A \to B \mid f \text{ onto}\}$
- \mathcal{EO}_n subcategory of \mathcal{E}_n with only of order-preserving functions.
- \mathcal{EF}_n subcategory of \mathcal{E}_n with only of order-decreasing functions.
- \mathcal{EC}_n subcategory of \mathcal{E}_n with only of order-preserving and order-decreasing functions.
- \mathcal{EO}_n , \mathcal{EF}_n , \mathcal{EC}_n are locally trivial (every endomorphism is an identity).

- Define a category \mathcal{E}_n as follows. Objects: subsets of $\{1, \ldots, n\}$. Morphisms: $\mathcal{E}_n(A, B) = \{f : A \to B \mid f \text{ onto}\}$
- \mathcal{EO}_n subcategory of \mathcal{E}_n with only of order-preserving functions.
- \mathcal{EF}_n subcategory of \mathcal{E}_n with only of order-decreasing functions.
- \mathcal{EC}_n subcategory of \mathcal{E}_n with only of order-preserving and order-decreasing functions.
- \mathcal{EO}_n , \mathcal{EF}_n , \mathcal{EC}_n are locally trivial (every endomorphism is an identity).

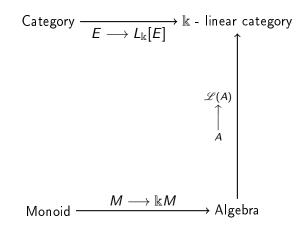
Proposition (IS 2016)

There is an isomorphism of algebras

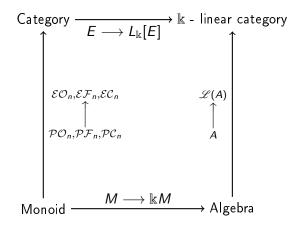
$$\Bbbk \mathcal{PO}_n \simeq \Bbbk \mathcal{EO}_n, \quad \& \mathcal{PF}_n \simeq \Bbbk \mathcal{EF}_n, \quad \& \mathcal{PC}_n \simeq \Bbbk \mathcal{EC}_n$$

Remark

Similar result holds for many other finite semigroups.(Solomon, Steinberg, Guo, Chen, IS, Wang)

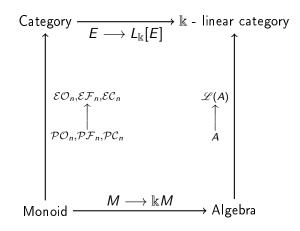


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



э

・ 伺 ト ・ ヨ ト ・ ヨ ト

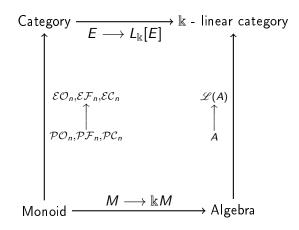


Proposition

This diagram is "commutative" for \mathcal{PO}_n , \mathcal{PF}_n and \mathcal{PC}_n .

Itamar Stein (SCE)

Quiver presentation for \mathcal{PO}_n , \mathcal{PF}_n , \mathcal{PC}_n



Proposition

This diagram is "commutative" for \mathcal{PO}_n , \mathcal{PF}_n and \mathcal{PC}_n . $L_{\Bbbk}[\mathcal{EO}_n] \simeq \mathscr{L}(\Bbbk \mathcal{PO}_n)$, $L_{\Bbbk}[\mathcal{EF}_n] \simeq \mathscr{L}(\Bbbk \mathcal{PF}_n)$, $L_{\Bbbk}[\mathcal{EC}_n] \simeq \mathscr{L}(\Bbbk \mathcal{PC}_n)$.

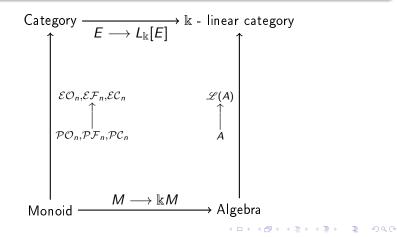
Itamar Stein (SCE)

Lemma

If $\langle Q | R \rangle$ is a (category) presentation of E then it is also a (k-linear category) presentation of $L_{\Bbbk}[E]$.

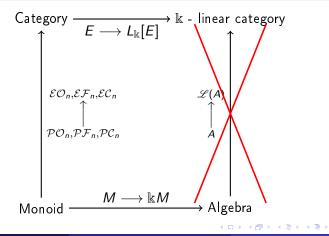
Lemma

If $\langle Q | R \rangle$ is a (category) presentation of E then it is also a (k-linear category) presentation of $L_{\mathbb{k}}[E]$.



Lemma

If $\langle Q | R \rangle$ is a (category) presentation of E then it is also a (k-linear category) presentation of $L_{\mathbb{k}}[E]$.



Itamar Stein (SCE)

Itamar Stein (SCE)

• So it is left only to find a (category) presentation for $\mathcal{EO}_n, \mathcal{EF}_n, \mathcal{EC}_n$.

イロト イポト イヨト イヨト

- So it is left only to find a (category) presentation for $\mathcal{EO}_n, \mathcal{EF}_n, \mathcal{EC}_n$.
- This is doable!

Itamar Stein (SCE)

・聞き ・ヨキ ・ヨキ

- So it is left only to find a (category) presentation for $\mathcal{EO}_n, \mathcal{EF}_n, \mathcal{EC}_n$.
- This is doable!(But not in a 20 minutes talk).

▲ 刪 ト ▲ 三 ト

Itamar Stein (SCE)

- So it is left only to find a (category) presentation for $\mathcal{EO}_n, \mathcal{EF}_n, \mathcal{EC}_n$.
- This is doable!(But not in a 20 minutes talk).

Remark

Using this approach we can obtain also a description of other invariants such as the Cartan matrix, Loewy length etc..

Thank you!

Theorem (IS)

Let $M = \mathcal{PO}_n$. Denote by d_i^k the morphism corresponding to the unique order preserving onto function $f : [k+1] \rightarrow [k]$ such that f(i) = f(i+1) then

•
$$d_i^{k-1}d_j^k = d_{j-1}^{k-1}d_i^k$$
 $(2 \le k \le n-1, 1 \le i < j \le k)$

is a quiver presentation for $\mathbb{k} \mathcal{PO}_n$.

Theorem (IS)

Let $M = \mathcal{PC}_n$. Denote by d_i^A the morphism whose domain is A and $i \in A$ is its unique element such that $d_i^A(i) = i - 1$. Then

•
$$d_i^{A_j}d_j^A = d_j^{A_i}d_i^A$$
 $(j > i + 1, i, j \in A)$

•
$$d_i^{A_{i+1}}d_{i+1}^A = d_i^{(A_i)_{i+1}}d_{i+1}^{A_i}d_i^A$$
 $(i, i+1 \in A)$

is a quiver presentation of $\Bbbk \mathcal{PC}_n$.

Theorem (IS)

Let $M = \mathcal{PF}_n$. Denote by $d_{i,i}^A$ is the morphism whose domain is A and $j \in A$ is its unique element such that $d_{i,i}^A(j) = i \neq j$. Then • $d_{i,i}^{A_{s,t}} d_{s,t}^{A} = d_{s,t}^{A_{i,j}} d_{i,i}^{A}$ $(s > j, t, j \in A)$ • $d_{i,i}^{A_{s,t}}d_{s,t}^{A} = d_{i,i}^{A_{i,t}}d_{i,t}^{A_{i,j}}d_{i,j}^{A}$ $(s = j, t, j \in A)$ • $d_{i,i}^{A_{s,t}} d_{s,t}^{A} = d_{s,i}^{A_{i,t}} d_{i,t}^{A_{i,j}} d_{i,j}^{A}$ $(i < s < j, s, t, j \in A)$ • $d_{i,i}^{A_{s,t}} d_{s,t}^{A} = d_{s,i}^{A_{i,t}} d_{i,t}^{A_{i,j}} d_{i,i}^{A}$ $(s \le i, t, j \in A)$ • $d_{i,i}^{A_{s,t}} d_{s,t}^{A} = d_{s,i}^{A_{i,t}} d_{i,s}^{A_{i,j}} d_{s,i}^{A_{s,j}} d_{s,i}^{A}$ $(i < s < j, t, j \in A, s \notin A)$ • $d_{i,i}^{(A_{i,t})_{s,i}} d_{s,i}^{A_{i,t}} d_{i,t}^{A} = d_{s,i}^{A_{i,t}} d_{i,t}^{A_{i,j}} d_{i,j}^{A}$ (s < i < j < t, $t, j \in A$, $i \notin A$) is a quiver presentation of $\mathbb{k} \mathcal{PF}_n$.

3

イロト イポト イヨト イヨト