Algorithmic properties of tree-like inverse monoids

Nóra Szakács (joint work with Robert Gray and Pedro Silva)

University of York, UK

SandGAL 2019

Inverse monoids

Definition

A monoid M is called an inverse monoid if every element $m \in M$ has a unique inverse m^{-1} satisfying

$$mm^{-1}m = m, m^{-1}mm^{-1} = m^{-1}$$

Inverse monoids

Definition

A monoid M is called an inverse monoid if every element $m \in M$ has a unique inverse m^{-1} satisfying

$$mm^{-1}m = m, m^{-1}mm^{-1} = m^{-1}$$

The typical example: the symmetric inverse monoid on a set X: $X \rightarrow X$ partial injective maps under partial multiplication.

Inverse monoids

Definition

A monoid M is called an inverse monoid if every element $m \in M$ has a unique inverse m^{-1} satisfying

$$mm^{-1}m = m, m^{-1}mm^{-1} = m^{-1}$$

The typical example: the symmetric inverse monoid on a set X: $X \rightarrow X$ partial injective maps under partial multiplication.

Natural partial order: $a \le b$ iff there exists an idempotent e with a = be.

An inverse monoid presentation: $M = Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$, where u_i, v_i are words in $(A \cup A^{-1})^*$ — the "most general" inverse monoid generated by A, where

 $u_i = v_i$.

An inverse monoid presentation: $M = Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$, where u_i, v_i are words in $(A \cup A^{-1})^*$ — the "most general" inverse monoid generated by A, where $u_i = v_i$.

The word problem for M: given $u, v \in (A \cup A^{-1})^*$, do we have $u =_M v$?

An inverse monoid presentation: $M = Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$, where u_i, v_i are words in $(A \cup A^{-1})^*$ — the "most general" inverse monoid generated by A, where $u_i = v_i$.

The word problem for M: given $u, v \in (A \cup A^{-1})^*$, do we have $u =_M v$?

M has solvable word problem if there exists an algorithm that decides the word problem.

An inverse monoid presentation: $M = Inv\langle A \mid u_i = v_i \ (i \in I) \rangle$, where u_i, v_i are words in $(A \cup A^{-1})^*$ — the "most general" inverse monoid generated by A, where $u_i = v_i$.

The word problem for M: given $u, v \in (A \cup A^{-1})^*$, do we have $u =_M v$?

 ${\it M}$ has solvable word problem if there exists an algorithm that decides the word problem.

The main result of the talk: inverse monoids which satisfy a certain geometric property have solvable word problem, (and other nice algorithmic properties).

The Cayley graph

Let M be an inverse monoid generated by A.

The Cayley graph $\Gamma(M, A)$ of M is an edge-labeled, directed graph

- with vertex set M,
- ▶ for any $m \in M$, and any $a \in A \cup A^{-1}$, $m \xrightarrow{a} ma$ is an edge.

The Cayley graph

Let M be an inverse monoid generated by A.

The Cayley graph $\Gamma(M, A)$ of M is an edge-labeled, directed graph

- with vertex set M,
- ▶ for any $m \in M$, and any $a \in A \cup A^{-1}$, $m \xrightarrow{a} ma$ is an edge.

Note:

► aa^{-1} , $a^{-1}a$ are not always loops,

The Cayley graph

Let M be an inverse monoid generated by A.

The Cayley graph $\Gamma(M, A)$ of M is an edge-labeled, directed graph

- with vertex set M,
- ▶ for any $m \in M$, and any $a \in A \cup A^{-1}$, $m \xrightarrow{a} ma$ is an edge.

Note:

- ► aa^{-1} , $a^{-1}a$ are not always loops,
- the Cayley graph is not strongly connected.

The strongly connected components

Fact: if m, ma are in the strongly connected component, then $maa^{-1} = m$, that is, in these components, edges occur in inverse pairs.

The strongly connected components

Fact: if m, ma are in the strongly connected component, then $maa^{-1} = m$, that is, in these components, edges occur in inverse pairs.

Definition

The strongly connected component of m is called the **Schützenberger graph** of m, and is denoted by S(m).

The strongly connected components

Fact: if m, ma are in the strongly connected component, then $maa^{-1} = m$, that is, in these components, edges occur in inverse pairs.

Definition

The strongly connected component of m is called the **Schützenberger graph** of m, and is denoted by S(m).

Fact: mm^{-1} is always a vertex of S(m), moreover, it is the unique idempotent vertex.

Schützenberger automata

Let $M = \langle A \rangle$ be an inverse monoid. The Schützenberger automaton of m: $SA(m) = (S(m), mm^{-1}, m)$. Theorem (Stephen, 1990)

►
$$L(\mathcal{SA}(m)) = \{w \in (A \cup A^{-1})^* : w \ge_M m\},$$

- ▶ for $u, v \in (A \cup A^{-1})^*$, $u_M = v_M$ iff $v \in L(SA(u))$ and $u \in L(SA(v))$,
- the word problem for M boils down to deciding the languages of the Schützenberger automata

Constructing $\mathcal{SA}(w)$

Let $M = \text{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle$, and $w \in (A \cup A^{-1})^*$. To build SA(w),

- 1. start with the linear automaton corresponding to w;
- 2. **expand:** if one side of a relation is readable between two vertices and the other is not, add it to the graph;
- 3. **fold:** if $u \xrightarrow{a} v_1$ and $u \xrightarrow{a} v_2$, or $v_1 \xrightarrow{a} u$ and $v_2 \xrightarrow{a} u$, identify v_1 and v_2 ;
- 4. repeat (2) and (3) until the graph stabilizes (possibly forever).

Constructing $\mathcal{SA}(w)$

Let $M = \text{Inv}\langle A \mid u_i = v_i \ (i \in I) \rangle$, and $w \in (A \cup A^{-1})^*$. To build SA(w),

- 1. start with the linear automaton corresponding to w;
- 2. **expand:** if one side of a relation is readable between two vertices and the other is not, add it to the graph;
- 3. **fold:** if $u \xrightarrow{a} v_1$ and $u \xrightarrow{a} v_2$, or $v_1 \xrightarrow{a} u$ and $v_2 \xrightarrow{a} u$, identify v_1 and v_2 ;
- 4. repeat (2) and (3) until the graph stabilizes (possibly forever).

Theorem (Stephen)

These operations are confluent, and the limit automaton is SA(w).

Graphs as metric spaces

Let Γ be a graph, $u, v \in V(\Gamma)$,

 $d(u, v) := \min\{n : e_1 \dots e_n \text{ is a path from } u \text{ to } v\}.$

This is a **metric** on the vertices.

Graphs as metric spaces

Let Γ be a graph, $u, v \in V(\Gamma)$,

 $d(u, v) := \min\{n : e_1 \dots e_n \text{ is a path from } u \text{ to } v\}.$

This is a **metric** on the vertices.

If Γ is a digraph, it may not be symmetric, however for Schützenberger graphs, it is.

Graphs as metric spaces

Let Γ be a graph, $u, v \in V(\Gamma)$,

 $d(u, v) := \min\{n : e_1 \dots e_n \text{ is a path from } u \text{ to } v\}.$

This is a **metric** on the vertices.

If Γ is a digraph, it may not be symmetric, however for Schützenberger graphs, it is.

A geodesic from u to v: a path with length d(u, v).

Tree-like graphs

Definition

A graph is tree-like if it is quasi-isometric to a tree.

Tree-like graphs

Definition

A graph is tree-like if it is quasi-isometric to a tree.

Definition

An inverse monoid is tree-like if all its Schützenberger graphs are tree-like (this is independent of the generating system).

Tree-like graphs

Definition

A graph is tree-like if it is quasi-isometric to a tree.

Definition

An inverse monoid is tree-like if all its Schützenberger graphs are tree-like (this is independent of the generating system).

Examples

- finite inverse monoids
- ► free inverse monoids (Schützenberger graphs are finite trees)
- Inv⟨A | u_i = v_i (i ∈ I)⟩ where u_i, v_i are equal to 1 in the free group (Schützenberger graphs are trees)
- virtually free groups
- $\blacktriangleright \operatorname{Inv}\langle x_1,\ldots,x_n,y_1,\ldots,y_n \mid [x_1,y_1]\cdot\ldots\cdot [x_n,y_n] = 1 \rangle \ (n \ge 2)$

Regular geodesics

Let $M = \langle X \rangle$ be an inverse monoid. Geo(w) := set of labels of geodesics in S(w) from $x_0 := ww^{-1}$. Theorem

If M is a finitely presented tree-like inverse monoid, then Geo(w) is regular.

Regular geodesics

Let $M = \langle X \rangle$ be an inverse monoid. Geo(w) := set of labels of geodesics in S(w) from $x_0 := ww^{-1}$.

Theorem

If M is a finitely presented tree-like inverse monoid, then Geo(w) is regular.

Remark: there exist f.g. tree-like inverse monoids which don't have a regular set of geodesics, and hence are not finitely presented.

The main theorems

Theorem

If M is a finitely presented inverse monoid, and S(w) is tree-like, then L(SA(w)) is context-free.

The main theorems

Theorem

If M is a finitely presented inverse monoid, and S(w) is tree-like, then L(SA(w)) is context-free.

Moreover, there is an algorithm that constructs the pushdown automata with input the presentation and w.

The main theorems

Theorem

If M is a finitely presented inverse monoid, and S(w) is tree-like, then L(SA(w)) is context-free.

Moreover, there is an algorithm that constructs the pushdown automata with input the presentation and w. Hence:

Theorem

The word problem for tree-like inverse monoids is uniformly decidable, that is, there is a Turing machine with input

•
$$M = \text{Inv}\langle A \mid u_i = v_i \ (1 \le i \le n) \rangle$$

►
$$u, v \in (A \cup A^{-1})^*$$

that halts if and only if M is tree-like, and then decides if $u =_M v$.

Thank you for your attention!