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Inverse monoids

De�nition
A monoid M is called an inverse monoid if every element m ∈ M
has a unique inverse m−1 satisfying

mm−1m = m,m−1mm−1 = m−1.

The typical example: the symmetric inverse monoid on a set X :

X → X partial injective maps under partial multiplication.

Natural partial order: a ≤ b i� there exists an idempotent e with

a = be.
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Inverse monoid presentations

An inverse monoid presentation: M = Inv〈A | ui = vi (i ∈ I )〉,
where ui , vi are words in (A ∪ A−1)∗

� the �most general� inverse monoid generated by A, where
ui = vi .

The word problem for M: given u, v ∈ (A ∪ A−1)∗, do we have

u =M v?

M has solvable word problem if there exists an algorithm that

decides the word problem.

The main result of the talk: inverse monoids which satisfy a certain

geometric property have solvable word problem, (and other nice

algorithmic properties).
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The Cayley graph

Let M be an inverse monoid generated by A.
The Cayley graph Γ(M,A) of M is an edge-labeled, directed graph

I with vertex set M,

I for any m ∈ M, and any a ∈ A ∪ A−1, m
a−→ ma is an edge.

Note:

I aa−1, a−1a are not always loops,

I the Cayley graph is not strongly connected.
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The strongly connected components

Fact: if m,ma are in the strongly connected component, then

maa−1 = m, that is, in these components, edges occur in inverse

pairs.

De�nition
The strongly connected component of m is called the

Schützenberger graph of m, and is denoted by S(m).

Fact: mm−1 is always a vertex of S(m), moreover, it is the unique

idempotent vertex.
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Schützenberger automata

Let M = 〈A〉 be an inverse monoid.

The Schützenberger automaton of m: SA(m) = (S(m),mm−1,m).

Theorem (Stephen, 1990)

I L(SA(m)) = {w ∈ (A ∪ A−1)∗ : w ≥M m},
I for u, v ∈ (A ∪ A−1)∗, uM = vM i� v ∈ L(SA(u)) and

u ∈ L(SA(v)),

I the word problem for M boils down to deciding the languages

of the Schützenberger automata
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Constructing SA(w)

Let M = Inv〈A | ui = vi (i ∈ I )〉, and w ∈ (A ∪ A−1)∗.
To build SA(w),

1. start with the linear automaton corresponding to w ;

2. expand: if one side of a relation is readable between two

vertices and the other is not, add it to the graph;

3. fold: if u
a−→v1 and u

a−→v2, or v1
a−→u and v2

a−→u, identify
v1 and v2;

4. repeat (2) and (3) until the graph stabilizes (possibly forever).

Theorem (Stephen)

These operations are con�uent, and the limit automaton is SA(w).
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Graphs as metric spaces

Let Γ be a graph, u, v ∈ V (Γ),

d(u, v) := min{n : e1 . . . en is a path from u to v}.

This is a metric on the vertices.

If Γ is a digraph, it may not be symmetric, however for

Schützenberger graphs, it is.

A geodesic from u to v : a path with length d(u, v).
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Tree-like graphs

De�nition
A graph is tree-like if it is quasi-isometric to a tree.

De�nition
An inverse monoid is tree-like if all its Schützenberger graphs are

tree-like (this is independent of the generating system).

Examples

I �nite inverse monoids

I free inverse monoids (Schützenberger graphs are �nite trees)

I Inv〈A | ui = vi (i ∈ I )〉 where ui , vi are equal to 1 in the free

group (Schützenberger graphs are trees)

I virtually free groups

I Inv〈x1, . . . , xn, y1, . . . , yn | [x1, y1] · . . . · [xn, yn] = 1〉 (n ≥ 2)
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Regular geodesics

Let M = 〈X 〉 be an inverse monoid.

Geo(w) := set of labels of geodesics in S(w) from x0 := ww−1.

Theorem
If M is a �nitely presented tree-like inverse monoid, then Geo(w) is

regular.

Remark: there exist f.g. tree-like inverse monoids which don't have

a regular set of geodesics, and hence are not �nitely presented.
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The main theorems

Theorem
If M is a �nitely presented inverse monoid, and S(w) is tree-like,

then L(SA(w)) is context-free.

Moreover, there is an algorithm that constructs the pushdown

automata with input the presentation and w . Hence:

Theorem
The word problem for tree-like inverse monoids is uniformly

decidable, that is, there is a Turing machine with input

I M = Inv〈A | ui = vi (1 ≤ i ≤ n)〉
I u, v ∈ (A ∪ A−1)∗

that halts if and only if M is tree-like, and then decides if u =M v .

Nóra Szakács Algorithmic properties of tree-like inverse monoids



Inverse monoids and languages
Tree-like inverse monoids

The main theorems

Theorem
If M is a �nitely presented inverse monoid, and S(w) is tree-like,

then L(SA(w)) is context-free.

Moreover, there is an algorithm that constructs the pushdown

automata with input the presentation and w .

Hence:

Theorem
The word problem for tree-like inverse monoids is uniformly

decidable, that is, there is a Turing machine with input

I M = Inv〈A | ui = vi (1 ≤ i ≤ n)〉
I u, v ∈ (A ∪ A−1)∗

that halts if and only if M is tree-like, and then decides if u =M v .

Nóra Szakács Algorithmic properties of tree-like inverse monoids



Inverse monoids and languages
Tree-like inverse monoids

The main theorems

Theorem
If M is a �nitely presented inverse monoid, and S(w) is tree-like,

then L(SA(w)) is context-free.

Moreover, there is an algorithm that constructs the pushdown

automata with input the presentation and w . Hence:

Theorem
The word problem for tree-like inverse monoids is uniformly

decidable, that is, there is a Turing machine with input

I M = Inv〈A | ui = vi (1 ≤ i ≤ n)〉
I u, v ∈ (A ∪ A−1)∗

that halts if and only if M is tree-like, and then decides if u =M v .

Nóra Szakács Algorithmic properties of tree-like inverse monoids



Inverse monoids and languages
Tree-like inverse monoids

Thank you for your attention!
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