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Introduction Cayley graphs

Cayley graphs

Cayley digraph
−−→
Cay(G,A)

G is a group

A ⊆ G

Vertex set is G

Arc set is {(g, ga) : g ∈ G, a ∈ A}

Cayley color digraph
−−→
Cayc(G,A)

Arc (g, ga) is given color a

Cayley graph Cay(G,A)

Underlying graph of
−−→
Cay(G,A)

{u, v} is an edge if and only if u = va or v = ua for some a ∈ A

{u, v} is an edge in Cay(G,A) if and only if (u, v) or (v , u) is an arc in
−−→
Cay(G,A)
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Main Results Equivalence relation and components of Cayley graphs

Equivalence relation and components of Cayley graphs

Definition 1
The equivalence relation p on G is defined by u p v if and only if either u = v or there
is a path from u to v in Cay(G,A).

Definition 2
C is a component of Cay (G,A) if and only if there is an equivalence class X of the
relation p such that C is the subgraph of Cay (G,A) induced by X , that is,
C = Cay (G,A)[X ].

Remark 3

u p v if and only if u and v are in the same component of Cay (G,A).
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Main Results Equivalence relation and components of Cayley graphs

Relations between components and cosets

Theorem 4
Let u, v ∈ G. Then u and v are in the same coset of ⟨A⟩ in G if and only if u p v , where
p is the equivalence relation induced by Cay(G,A).

Example In Z6, ⟨2⟩ = {0, 2, 4}.
Cosets of ⟨2⟩ in Z6 are 0 + ⟨2⟩ = {0, 2, 4} and 1 + ⟨2⟩ = {1, 3, 5}.

−−→
Cay (Z6, {2})
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Main Results Connections between components and cosets

Connections between components and cosets

Corollary 5

Let X ⊆ G. Then X is an equivalence class of the relation p induced by Cay(G,A)
if and only if X is a coset of ⟨A⟩ in G.

Corollary 6

Let G be a group and let A ⊆ G. Any component of Cay(G,A) is of the form

Cay(G,A)[g⟨A⟩]

for some g ∈ G.

Corollary 7

The number of components of Cay (G,A) equals [G : ⟨A⟩], the index of ⟨A⟩ in G.
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Main Results Construction generating sets of groups

Construction generating sets of groups

Generating set of a group G is a subset such that each element of the group can be
expressed as the combination (under the group operation) of finitely many elements of
the subset and their inverses.

Theorem 8 (Well-known Result)

The Cayley graph Cay (G,A) is connected if and only if G = ⟨A⟩.

Theorem 9
If Cay (G,A) has finitely many components and if v1, v2, . . . , vk are representative
vertices in all the components of Cay (G,A), then

S1 = A ∪ {v−1
1 v2, v

−1
2 v3, . . . , v−1

k−1vk} and S2 = A ∪ {v−1
1 v2, v

−1
1 v3, . . . , v−1

1 vk}

form generating sets of G.
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Main Results Construction generating sets of groups

Construction generating sets of groups

Idea of Theorem 9

Simple diagram of
−−→
Cay (G,S1);S1 = A ∪ {v−1

1 v2, v
−1
2 v3, . . . , v−1

k−1vk}
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Main Results Construction generating sets of groups

Construction generating sets of groups

Idea of Theorem 9

Simple diagram of
−−→
Cay (G,S2);S2 = A ∪ {v−1

1 v2, v
−1
1 v3, . . . , v−1

1 vk}
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

A generating set A of a group G is minimal if no proper subset of A generates G.

Let G be a finite group.
Algorithm for finding minimal generating sets

1 Set A = {a1}, where a1 ∈ G and a1 ̸= e.

2 Set v1 = a1, i = 1.

3 Draw Cay (G,A).

4 If Cay (G,A) is connected, skip to step (7). Otherwise, set i = i + 1 and v2 = bi ,
where bi is an element of G not in the component of v1.

5 Set ai = v−1
1 v2 and A = A ∪ {ai}.

6 Return to step (3).

7 If i = 1, stop. Otherwise, set i = i − 1.

8 Draw Cay (G,A\{ai}).
9 If Cay (G,A\{ai}) is connected, set A = A\{ai}. Otherwise, go to step (10).

10 Return to step (7).

When this algorithm stops, we have A is a minimal generating set of G.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

Let G be the group defined by presentation

G = ⟨a, b, c : a2 = b2 = (ab)2 = c3 = acabc−1 = abcbc−1⟩. (1)

Its Cayley table is given by this table 1.

Cayley table of the group G defined by (1).

1. The GAP Group, GAP - groups, Algorithms, and Programming, Version 4.10.0, 2018,
http : //www.gap-system.org
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

We can use the algorithm mentioned previously to find a minimal generating set of G
as follows :
1. Set A = {b}, v1 = b, i = 1.
2. Draw Cay (G, {b}).

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {b}) ; blue arcs are induced by b.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

3. Since Cay (G, {b}) is not connected, set i = 2 and v2 = ab.
4. Set a2 = b−1(ab) = a and A = {b, a}.
5. Draw Cay (G, {b, a}).

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {b, a}) ; blue arcs are induced by b and red arcs are induced by a.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

6. Since Cay (G, {b, a}) is not connected, set i = 3 and v2 = bc.
7. Set a3 = b−1(bc) = c and A = {b, a, c}.
8. Draw Cay (G, {b, a, c}).

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {b, a, c}) ; blue arcs are induced by b, red arcs are induced by a, and green arcs are induced
by c.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

9. Since Cay (G, {b, a, c}) is connected and i = 3, set i = 2.
10. Draw Cay (G, {b, c}).

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {b, c}) ; blue arcs are induced by b and green arcs are induced by c.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

11. Since Cay (G, {b, c}) is connected, set A = {b, c}.
12. Since i = 2, set i = 1.
13. Draw Cay (G, {c}).

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {c}) ; green arcs are induced by c.
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Main Results Finding minimal generating sets of finite groups

Finding minimal generating sets of finite groups

14. Since Cay (G, {c}) is not connected, go to the next step.
15. Since i = 1, stop.
This shows that A = {b, c} is a minimal generating set of G.

e a

abb

cc acc

ac

abc

abccbcc

bc

c

FIGURE –
−−→
Cayc (G, {b, c}) ; blue arcs are induced by b and green arcs are induced by c.
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