

Finding generating sets of finite groups using their Cayley graphs

Presented by Tanakorn Udomworarat

Advisor Teerapong Suksumran

Department of Mathematics, Faculty of Science, Chiang Mai University, Thailand

Semigroups and Groups, Automata, Logics Politecnico di Milano, Cremona 10-13 June 2019

1 Introduction

Cayley graphs

2 Main Results

- Equivalence relation and components of Cayley graphs
- Connections between components and cosets
- Construction generating sets of groups
- Finding minimal generating sets of finite groups

Cayley digraph $\overrightarrow{Cay}(G, A)$

- G is a group
- $A \subseteq G$
- Vertex set is G
- Arc set is {(*g*, *ga*) : *g* ∈ *G*, *a* ∈ *A*}
- Cayley color digraph $\overrightarrow{\mathbf{Cay}_c}(G, A)$
 - Arc (g, ga) is given color a

Cayley graph Cay(G, A)

- Underlying graph of $\overrightarrow{\operatorname{Cay}}(G, A)$
- $\{u, v\}$ is an edge if and only if u = va or v = ua for some $a \in A$
- $\{u, v\}$ is an edge in Cay(G, A) if and only if (u, v) or (v, u) is an arc in $\overrightarrow{Cay}(G, A)$

Equivalence relation and components of Cayley graphs

Definition 1

The equivalence relation p on G is defined by u p v if and only if either u = v or there is a path from u to v in Cay(G, A).

Definition 2

C is a **component** of Cay(G, A) if and only if there is an equivalence class *X* of the relation \mathfrak{p} such that *C* is the subgraph of Cay(G, A) induced by *X*, that is, C = Cay(G, A)[X].

Remark 3

u p v if and only if u and v are in the same component of Cay (G, A).

Relations between components and cosets

Theorem 4

Let $u, v \in G$. Then u and v are in the same coset of $\langle A \rangle$ in G if and only if $u \not v$, where \mathfrak{p} is the equivalence relation induced by $\operatorname{Cay}(G, A)$.

 $\begin{array}{l} \mbox{Example In } \mathbb{Z}_6, \, \langle 2 \rangle = \{0,2,4\}. \\ \mbox{Cosets of } \langle 2 \rangle \mbox{ in } \mathbb{Z}_6 \mbox{ are } 0 + \langle 2 \rangle = \{0,2,4\} \mbox{ and } 1 + \langle 2 \rangle = \{1,3,5\}. \end{array}$

Connections between components and cosets

Corollary 5

Let $X \subseteq G$. Then X is an equivalence class of the relation p induced by Cay(G, A) if and only if X is a coset of $\langle A \rangle$ in G.

Corollary 6

Let G be a group and let $A \subseteq G$. Any component of Cay(G, A) is of the form

 $\operatorname{Cay}(G, A)[g\langle A\rangle]$

for some $g \in G$.

Corollary 7

The number of components of Cay(G, A) equals $[G : \langle A \rangle]$, the index of $\langle A \rangle$ in G.

Construction generating sets of groups

Generating set of a group G is a subset such that each element of the group can be expressed as the combination (under the group operation) of finitely many elements of the subset and their inverses.

Theorem 8 (Well-known Result)

The Cayley graph Cay(G, A) is connected if and only if $G = \langle A \rangle$.

Theorem 9

If Cay(G, A) has finitely many components and if v_1, v_2, \ldots, v_k are representative vertices in all the components of Cay(G, A), then

$$S_1 = A \cup \{v_1^{-1}v_2, v_2^{-1}v_3, \dots, v_{k-1}^{-1}v_k\} \quad \text{and} \quad S_2 = A \cup \{v_1^{-1}v_2, v_1^{-1}v_3, \dots, v_1^{-1}v_k\}$$

form generating sets of G.

Construction generating sets of groups

Idea of Theorem 9

Simple diagram of $\overrightarrow{Cay}(G, S_1)$; $S_1 = A \cup \{v_1^{-1}v_2, v_2^{-1}v_3, \dots, v_{k-1}^{-1}v_k\}$

T. Udomworarat | CMU

Construction generating sets of groups

Idea of Theorem 9

Simple diagram of $\overrightarrow{\operatorname{Cay}}(G, S_2)$; $S_2 = A \cup \{v_1^{-1}v_2, v_1^{-1}v_3, \dots, v_1^{-1}v_k\}$

T. Udomworarat | CMU

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let G be a finite group. Algorithm for finding minimal generating sets

1 Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let *G* be a finite group. Algorithm for finding minimal generating sets

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let *G* be a finite group. Algorithm for finding minimal generating sets

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let *G* be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1} v_2$ and $A = A \cup \{a_i\}$.

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).

A generating set A of a group G is minimal if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).
- 7 If i = 1, stop. Otherwise, set i = i 1.

A generating set A of a group G is minimal if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- 3 Draw Cay (G, A).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).
- 7 If i = 1, stop. Otherwise, set i = i 1.
- B Draw Cay $(G, A \setminus \{a_i\})$.

A generating set A of a group G is minimal if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).
- 7 If i = 1, stop. Otherwise, set i = i 1.
- B Draw Cay $(G, A \setminus \{a_i\})$.
- If Cay $(G, A \setminus \{a_i\})$ is connected, set $A = A \setminus \{a_i\}$. Otherwise, go to step (10).

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let G be a finite group.

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).
- 7 If i = 1, stop. Otherwise, set i = i 1.
- B Draw Cay $(G, A \setminus \{a_i\})$.
- If Cay $(G, A \setminus \{a_i\})$ is connected, set $A = A \setminus \{a_i\}$. Otherwise, go to step (10).
- 10 Return to step (7).

A generating set A of a group G is **minimal** if no proper subset of A generates G.

Let G be a finite group.

Algorithm for finding minimal generating sets

- **1** Set $A = \{a_1\}$, where $a_1 \in G$ and $a_1 \neq e$.
- **2** Set $v_1 = a_1, i = 1$.
- **3** Draw Cay (*G*, *A*).
- If Cay (G, A) is connected, skip to step (7). Otherwise, set i = i + 1 and $v_2 = b_i$, where b_i is an element of G not in the component of v_1 .
- **5** Set $a_i = v_1^{-1}v_2$ and $A = A \cup \{a_i\}$.
- 6 Return to step (3).
- 7 If i = 1, stop. Otherwise, set i = i 1.
- B Draw Cay $(G, A \setminus \{a_i\})$.
- If Cay $(G, A \setminus \{a_i\})$ is connected, set $A = A \setminus \{a_i\}$. Otherwise, go to step (10).
- 10 Return to step (7).

When this algorithm stops, we have A is a minimal generating set of G.

Let G be the group defined by presentation

$$G = \langle a, b, c \colon a^2 = b^2 = (ab)^2 = c^3 = acabc^{-1} = abcbc^{-1} \rangle.$$
 (1)

Its Cayley table is given by this table ¹.

•	е	a	b	ab	С	ac	bc	abc	CC	acc	bcc	abcc
е	е	a	b	ab	С	ac	bc	abc	CC	acc	bcc	abcc
a	а	е	ab	b	ac	с	abc	bc	acc	сс	abcc	bcc
b	b	ab	е	а	bc	abc	С	ac	bcc	abcc	CC	acc
ab	ab	b	а	e	abc	bc	ac	С	abcc	bcc	acc	СС
С	С	bc	abc	ac	сс	bcc	abcc	acc	е	b	ab	а
ac	ac	abc	bc	С	acc	abcc	bcc	СС	a	ab	b	е
bc	bc	С	ac	abc	bcc	сс	acc	abcc	b	е	a	ab
abc	abc	ac	С	bc	abcc	acc	сс	bcc	ab	а	е	b
сс	СС	abcc	acc	bcc	е	ab	а	b	С	abc	ac	bc
acc	acc	bcc	СС	abcc	а	b	е	ab	ac	bc	С	abc
bcc	bcc	acc	abcc	cc	b	a	ab	е	bc	ac	abc	С
abcc	abcc	сс	bcc	acc	ab	e	b	а	abc	С	bc	ac

Cayley table of the group G defined by (1).

^{1.} The GAP Group, GAP - groups, Algorithms, and Programming, Version 4.10.0, 2018, http://www.gap-system.org

We can use the algorithm mentioned previously to find a minimal generating set of *G* as follows :

1. Set
$$A = \{b\}, v_1 = b, i = 1$$
.

2. Draw Cay (G, {b}).

FIGURE – $\overrightarrow{Cay}_c(G, \{b\})$; blue arcs are induced by b.

Finding generating sets of groups using Cayley graphs

- 3. Since $Cay(G, \{b\})$ is not connected, set i = 2 and $v_2 = ab$. 4. Set $a_2 = b^{-1}(ab) = a$ and $A = \{b, a\}$.
- 5. Draw Cay (*G*, {*b*, *a*}).

FIGURE – $\overrightarrow{Cay_{C}}(G, \{b, a\})$; blue arcs are induced by b and red arcs are induced by a.

- 6. Since $Cay(G, \{b, a\})$ is not connected, set i = 3 and $v_2 = bc$. 7. Set $a_3 = b^{-1}(bc) = c$ and $A = \{b, a, c\}$.
- 8. Draw Cay (*G*, {*b*, *a*, *c*}).

FIGURE – $\overrightarrow{Cayc}(G, \{b, a, c\})$; blue arcs are induced by *b*, red arcs are induced by *a*, and green arcs are induced by *c*.

T. Udomworarat | CMU

9. Since $Cay(G, \{b, a, c\})$ is connected and i = 3, set i = 2. 10. Draw $Cay(G, \{b, c\})$.

FIGURE – $\overrightarrow{Cay}_{c}(G, \{b, c\})$; blue arcs are induced by *b* and green arcs are induced by *c*.

- 11. Since $Cay(G, \{b, c\})$ is connected, set $A = \{b, c\}$. 12. Since i = 2, set i = 1.
- 13. Draw Cay (*G*, {*c*}).

FIGURE – $\overrightarrow{Cay_c}(G, \{c\})$; green arcs are induced by c.

14. Since $Cay(G, \{c\})$ is not connected, go to the next step. 15. Since i = 1, stop.

This shows that $A = \{b, c\}$ is a minimal generating set of *G*.

FIGURE – $\overrightarrow{Cayc}(G, \{b, c\})$; blue arcs are induced by b and green arcs are induced by c.

- Chiang Mai University, Thailand
- Development and Promotion of Science and Technology Talents Project (DPST)
- Institute for the Promotion of Teaching Science and Technology (IPST)