On the multiplicative order of $\alpha + \alpha^{-1}$ in finite fields of characteristic two

Simone Ugolini

Università di Trento

SandGAL 2019 Politecnico di Milano Cremona, 10 June 2019

Problem (Blake et al., 1993)

Let \mathbb{F}_q be a finite field with q elements, where q is a power of a prime p.

Let \mathbb{F}_q^* be the multiplicative group of \mathbb{F}_q . If $\alpha \in \mathbb{F}_q^* \setminus \{1\}$ is an element of order $\operatorname{ord}(\alpha)$, can we find $\operatorname{ord}(\alpha + \alpha^{-1})$ from $\operatorname{ord}(\alpha)$?

- 1 注 🕨 - 1 注 🕨 - -

Problem (Blake et al., 1993)

Let \mathbb{F}_q be a finite field with q elements, where q is a power of a prime p. Let \mathbb{F}_q^* be the multiplicative group of \mathbb{F}_q . If $\alpha \in \mathbb{F}_q^* \setminus \{1\}$ is an element of order $\operatorname{ord}(\alpha)$, can we find $\operatorname{ord}(\alpha + \alpha^{-1})$ from $\operatorname{ord}(\alpha)$?

* 注入 * 注入 -

Problem (Blake et al., 1993)

Let \mathbb{F}_q be a finite field with q elements, where q is a power of a prime p.

Let \mathbb{F}_q^* be the multiplicative group of \mathbb{F}_q .

```
If \alpha \in \mathbb{F}_{a}^{*} \setminus \{1\} is an element of order \operatorname{ord}(\alpha), can we find
```

```
\operatorname{ord}(\alpha + \alpha^{-1}) from \operatorname{ord}(\alpha)?
```

Theorem (Shparlinski, 2001)

If $\gamma \in \mathbb{F}_q^*$ does not belong to any proper subfield of \mathbb{F}_q , then at least one of the multiplicative orders of γ and $\gamma + \gamma^{-1}$ exceeds $c(p,\varepsilon)(\ln q)^{4/3-\varepsilon}$, where $c(p,\varepsilon) > 0$ depends only on p and arbitrary $\varepsilon > 0$.

Remark

The theorem above is a particular case of Theorem 4.3 in (von zur Gathen-Shparlinski, 1999).

Theorem (Shparlinski, 2001)

If $\gamma \in \mathbb{F}_q^*$ does not belong to any proper subfield of \mathbb{F}_q , then at least one of the multiplicative orders of γ and $\gamma + \gamma^{-1}$ exceeds $c(p,\varepsilon)(\ln q)^{4/3-\varepsilon}$, where $c(p,\varepsilon) > 0$ depends only on p and arbitrary $\varepsilon > 0$.

Remark

The theorem above is a particular case of Theorem 4.3 in (von zur Gathen-Shparlinski, 1999).

Theorem (Shparlinski, 2001)

For any fixed $\varepsilon > 0$ and sufficiently large q, for any positive divisors n and m of q - 1 with $nm \ge q^{3/2+\varepsilon}$ there exists $\gamma \in \mathbb{F}_q^*$ with

$$\operatorname{ord}(\gamma) = n$$
 and $\operatorname{ord}(\gamma + \gamma^{-1}) = m$.

▶ ★ 문 ▶ ★ 문 ▶

Dickson polynomials

For each integer m > 0 we define the Dickson polynomial of degree m as

$$D_m(x) = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m}{m-i} \binom{m-i}{i} (-1)^i x^{m-2i}$$

Properties

• $D_m(x) \in \mathbb{Z}[x].$ • $D_m(x + x^{-1}) = x^m + x^{-m}.$

白 マ イ ヨ マ イ ヨ マ

Dickson polynomials

For each integer m > 0 we define the Dickson polynomial of degree m as

$$D_m(x) = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m}{m-i} \binom{m-i}{i} (-1)^i x^{m-2i}$$

Properties

•
$$D_m(x) \in \mathbb{Z}[x]$$
.

A B > A B >

Dickson polynomials

For each integer m > 0 we define the Dickson polynomial of degree m as

$$D_m(x) = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m}{m-i} \binom{m-i}{i} (-1)^i x^{m-2i}$$

Properties

•
$$D_m(x) \in \mathbb{Z}[x]$$
.

•
$$D_m(x+x^{-1}) = x^m + x^{-m}$$
.

(B)

- In the following \mathbb{F}_q is a finite field with 2^n elements for some positive integer n.
- Dickson polynomials will be considered as polynomials in F_q[x].

· * 문 * * 문 * ·

- In the following \mathbb{F}_q is a finite field with 2^n elements for some positive integer n.
- Dickson polynomials will be considered as polynomials in *F_q[x]*.

글 🖌 🔺 글 🕨

Roots of Dickson polynomials

- Any element α ∈ 𝔽_q can be written as α = γ + γ⁻¹ for some γ ∈ 𝔽^{*}_{q²} (i.e. γ is a root of x² + αx + 1 in 𝔽_{q²}).
- Finding a root $\alpha \in \mathbb{F}_q$ of $D_m(x)$ amounts to finding some $\gamma \in \mathbb{F}_{q^2}^*$ such that

$$D_m(\gamma + \gamma^{-1}) = \gamma^m + \gamma^{-m} = \gamma^{-m}(\gamma^m + 1)^2 = 0$$

or equivalently

$$\gamma^m + 1 = 0$$

namely $\operatorname{ord}(\gamma)$ divides *m*.

★ 문 ► ★ 문 ►

Roots of Dickson polynomials

- Any element $\alpha \in \mathbb{F}_q$ can be written as $\alpha = \gamma + \gamma^{-1}$ for some $\gamma \in \mathbb{F}_{q^2}^*$ (i.e. γ is a root of $x^2 + \alpha x + 1$ in \mathbb{F}_{q^2}).
- Finding a root $\alpha \in \mathbb{F}_q$ of $D_m(x)$ amounts to finding some $\gamma \in \mathbb{F}_{q^2}^*$ such that

$$D_m(\gamma + \gamma^{-1}) = \gamma^m + \gamma^{-m} = \gamma^{-m}(\gamma^m + 1)^2 = 0$$

or equivalently

$$\gamma^m + 1 = 0$$

namely $\operatorname{ord}(\gamma)$ divides *m*.

A question by Blokhuis et al., 2018

Let *m* be an integer which divides $q + 1 = 2^n + 1$.

$$S_m := \{ \alpha \in \mathbb{F}_q^* : D_m(\alpha) = D_m(\alpha^{-1}) = 0 \};$$

$$T_m := \{ \alpha \in \mathbb{F}_q^* : D_m(\alpha) = 0, D_m(\alpha^{-1}) \neq 0 \}$$

Are the sets S_m and T_m non-empty?

(E)

A question by Blokhuis et al., 2018

Let *m* be an integer which divides $q + 1 = 2^n + 1$. Consider the sets

$$S_m := \{ \alpha \in \mathbb{F}_q^* : D_m(\alpha) = D_m(\alpha^{-1}) = 0 \};$$

$$T_m := \{ \alpha \in \mathbb{F}_q^* : D_m(\alpha) = 0, D_m(\alpha^{-1}) \neq 0 \}$$

Are the sets S_m and T_m non-empty?

Some results (Blokhuis et al., 2018)

- Some answers are given for certain values of *m* in (Blokhuis et al., 2018).
- In the particular case m = q + 1 the sets S_{q+1} and T_{q+1} are both non-empty, provided that q > 4.

Some results (Blokhuis et al., 2018)

- Some answers are given for certain values of *m* in (Blokhuis et al., 2018).
- In the particular case m = q + 1 the sets S_{q+1} and T_{q+1} are both non-empty, provided that q > 4.

The graph associated with the map $x \mapsto x + x^{-1}$

In (Ugolini, 2012) I studied the structure of the graph associated with the map ϑ defined on $\mathbf{P}^1(\mathbb{F}_q) := \mathbb{F}_q \cup \{\infty\}$ as

$$\vartheta: x \mapsto egin{cases} \infty & ext{if } x \in \{0,\infty\}; \ x+x^{-1} & ext{otherwise} \end{cases}$$

The graph associated with the map $x \mapsto x + x^{-1}$

In (Ugolini, 2012) I studied the structure of the graph associated with the map ϑ defined on $\mathbf{P}^1(\mathbb{F}_q) := \mathbb{F}_q \cup \{\infty\}$ as

$$\vartheta: x \mapsto egin{cases} \infty & ext{if } x \in \{0,\infty\}; \ x+x^{-1} & ext{otherwise} \end{cases}$$

A note on the graph's construction

If $\alpha_1, \alpha_2, \alpha_3 \in \mathbf{P}^1(\mathbb{F}_q)$ and $\alpha_2 = \vartheta(\alpha_1), \alpha_3 = \vartheta(\alpha_2)$, then

$$\alpha_1 \longrightarrow \alpha_2 \longrightarrow \alpha_3$$

The graph associated with the map $x \mapsto x + x^{-1}$

In (Ugolini, 2012) I studied the structure of the graph associated with the map ϑ defined on $\mathbf{P}^1(\mathbb{F}_q) := \mathbb{F}_q \cup \{\infty\}$ as

$$\vartheta: x \mapsto egin{cases} \infty & ext{if } x \in \{0,\infty\}; \ x+x^{-1} & ext{otherwise} \end{cases}$$

A remark on the elements in S_{q+1} and T_{q+1}

The elements in S_{q+1} and T_{q+1} appear as leaves of the connected components of the graph associated with the map ϑ .

Example: graph associated with ϑ over $\mathbb{F}_q = \mathbb{F}_{2^6}$

Black nodes: elements in S_{q+1}

Example: graph associated with ϑ over $\mathbb{F}_q = \mathbb{F}_{2^6}$

Black nodes: elements in T_{q+1}

★ 문 ► ★ 문 ►

The properties of the graph, as

• the depth of the trees (which is the same in any connected component),

• the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^l m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

The properties of the graph, as

- the depth of the trees (which is the same in any connected component),
- the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^l m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

The properties of the graph, as

- the depth of the trees (which is the same in any connected component),
- the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^l m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

The properties of the graph, as

- the depth of the trees (which is the same in any connected component),
- the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^l m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

The properties of the graph, as

- the depth of the trees (which is the same in any connected component),
- the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^{l}m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

The properties of the graph, as

- the depth of the trees (which is the same in any connected component),
- the length of the cycles,

can be explained relating the map ϑ to the duplication map on a certain elliptic curve (a Koblitz curve).

Theorem

If $n := 2^{l}m$ for some non-negative integer l and some odd integer m, then either all trees in a connected component have depth 1 or l + 2.

Example

- In (Ugolini, 2018) some results on the orders of the iterates are given.
- Let γ be an element of $\mathbb{F}_{q^4} \setminus \{0,1\}$ such that $\operatorname{ord}(\gamma) \mid (q^2 + 1)$.
- It can be proved that γ is a leaf of a tree having depth l + 4 in the graph associated with θ over P¹(F_{q⁴}).

- In (Ugolini, 2018) some results on the orders of the iterates are given.
- Let γ be an element of $\mathbb{F}_{q^4} \setminus \{0,1\}$ such that $\operatorname{ord}(\gamma) \mid (q^2+1)$.
- It can be proved that γ is a leaf of a tree having depth *l* + 4 in the graph associated with θ over P¹(𝔽_{q⁴}).

- In (Ugolini, 2018) some results on the orders of the iterates are given.
- Let γ be an element of $\mathbb{F}_{q^4} \setminus \{0,1\}$ such that $\operatorname{ord}(\gamma) \mid (q^2+1)$.
- It can be proved that γ is a leaf of a tree having depth l + 4 in the graph associated with θ over P¹(F_{q⁴}).

• Let γ_i be the *i*-th iterate of γ , e.g.

$$\begin{split} \gamma_1 &= \vartheta(\gamma), \\ \gamma_2 &= \vartheta(\gamma_1) = \vartheta^2(\gamma), \\ \gamma_3 &= \vartheta(\gamma_2) = \vartheta^3(\gamma), \end{split}$$

• One of the following 3 cases is possible for the iterates of γ .

. . .

• Let γ_i be the *i*-th iterate of γ , e.g.

$$\begin{split} \gamma_1 &= \vartheta(\gamma), \\ \gamma_2 &= \vartheta(\gamma_1) = \vartheta^2(\gamma), \\ \gamma_3 &= \vartheta(\gamma_2) = \vartheta^3(\gamma), \end{split}$$

• One of the following 3 cases is possible for the iterates of γ .

. . .

• $ord(\gamma) | (q^2 + 1);$

- ord $(\gamma_1) \mid (q+1)$
- ord $(\gamma_2) \mid (q-1);$
- ...;
- $\operatorname{ord}(\gamma_{l+4}) \mid (q-1).$

回 と く ヨ と く ヨ と

æ

- $\operatorname{ord}(\gamma) | (q^2 + 1);$
- $\operatorname{ord}(\gamma_1) \mid (q+1);$
- ord $(\gamma_2) \mid (q-1);$
- ...;
- $\operatorname{ord}(\gamma_{l+4}) \mid (q-1).$

æ

個 と く ヨ と く ヨ と …

•
$$\operatorname{ord}(\gamma) \mid (q^2+1);$$

- $ord(\gamma_1) | (q+1);$
- $ord(\gamma_2) | (q-1);$
- . . . ;
- $\operatorname{ord}(\gamma_{I+4}) \mid (q-1).$

2

個 とくきとくきとう

•
$$\operatorname{ord}(\gamma) \mid (q^2+1);$$

- $ord(\gamma_1) | (q+1);$
- $ord(\gamma_2) | (q-1);$
- ...;
- $\operatorname{ord}(\gamma_{I+4}) \mid (q-1).$

回 と く ヨ と く ヨ と

2

- $\operatorname{ord}(\gamma) \mid (q^2 + 1);$
- $ord(\gamma_1) | (q + 1);$
- $ord(\gamma_2) | (q-1);$
- ...;
- $ord(\gamma_{I+4}) | (q-1).$

> < 臣 > < 臣 >

2

• $ord(\gamma) | (q^2 + 1);$

- $\operatorname{ord}(\gamma_1) \mid (q^2 1)$, $\operatorname{ord}(\gamma_1) \nmid (q + 1)$, $\operatorname{ord}(\gamma_1) \nmid (q 1)$;
- $\operatorname{ord}(\gamma_2) \mid (q^2 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q 1);$

• . . .

- $\operatorname{ord}(\gamma_{l+2}) | (q+1);$
- $\operatorname{ord}(\gamma_{l+3}) \mid (q-1);$
- $\operatorname{ord}(\gamma_{l+4}) \mid (q-1).$

• • = • • = •

- $ord(\gamma) | (q^2 + 1);$
- $ord(\gamma_1) \mid (q^2 1), ord(\gamma_1) \nmid (q + 1), ord(\gamma_1) \nmid (q 1);$
- $\operatorname{ord}(\gamma_2) \mid (q^2 1)$, $\operatorname{ord}(\gamma_2) \nmid (q + 1)$, $\operatorname{ord}(\gamma_2) \nmid (q 1)$;

• . . .

- $ord(\gamma_{l+2}) | (q+1);$
- $\operatorname{ord}(\gamma_{l+3}) \mid (q-1);$
- $\operatorname{ord}(\gamma_{l+4}) \mid (q-1).$

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• $\operatorname{ord}(\gamma) \mid (q^2 + 1);$ • $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$ • $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$

• . . .

- $\operatorname{ord}(\gamma_{l+2}) \mid (q+1);$
- $\operatorname{ord}(\gamma_{l+3}) \mid (q-1);$
- $ord(\gamma_{l+4}) \mid (q-1).$

* 注 * * 注 * …

- $\operatorname{ord}(\gamma) \mid (q^2 + 1);$ • $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$ • $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$ • ...
- $ord(\gamma_{I+2}) | (q+1);$
- $ord(\gamma_{l+3}) | (q-1);$
- $ord(\gamma_{l+4}) \mid (q-1).$

* 注 * * 注 * …

- $\operatorname{ord}(\gamma) \mid (q^2 + 1);$ • $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$ • $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$ • ...
- $ord(\gamma_{I+2}) | (q+1);$
- $ord(\gamma_{I+3}) | (q-1)$
- $\operatorname{ord}(\gamma_{I+4}) \mid (q-1).$

- $\operatorname{ord}(\gamma) \mid (q^2 + 1);$ • $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$ • $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$ • ...
- $ord(\gamma_{I+2}) | (q+1);$
- $ord(\gamma_{l+3}) | (q-1);$
- $\operatorname{ord}(\gamma_{l+4}) \mid (q-1).$

< 注入 < 注入 -

3

•
$$\operatorname{ord}(\gamma) \mid (q^2 + 1);$$

• $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$
• $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$
• ...

- $ord(\gamma_{I+2}) | (q+1);$
- $ord(\gamma_{l+3}) | (q-1);$
- $ord(\gamma_{l+4}) | (q-1).$

2

個 と く ヨ と く ヨ と …

• $ord(\gamma) | (q^2 + 1);$

- $\operatorname{ord}(\gamma_1) \mid (q^2 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q 1);$
- ora $(\gamma_2) \mid (q^2 1)$, ora $(\gamma_2) \nmid (q + 1)$, ora $(\gamma_2) \mid (q 1)$
- . . .
- $\operatorname{ord}(\gamma_{l+4}) \mid (q^2 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q + 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q 1).$

▶ ★ 문 ▶ ★ 문 ▶

3

- $ord(\gamma) | (q^2 + 1);$
- $\operatorname{ord}(\gamma_1) \mid (q^2 1)$, $\operatorname{ord}(\gamma_1) \nmid (q + 1)$, $\operatorname{ord}(\gamma_1) \nmid (q 1)$;
- $\operatorname{ord}(\gamma_2) \mid (q^2 1)$, $\operatorname{ord}(\gamma_2) \nmid (q + 1)$, $\operatorname{ord}(\gamma_2) \nmid (q 1)$;
- . . .
- $\operatorname{ord}(\gamma_{l+4}) \mid (q^2 1)$, $\operatorname{ord}(\gamma_{l+4}) \nmid (q + 1)$, $\operatorname{ord}(\gamma_{l+4}) \nmid (q 1)$.

> < 臣 > < 臣 >

•
$$\operatorname{ord}(\gamma) \mid (q^2 + 1);$$

• $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$
• $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$

• $\operatorname{ord}(\gamma_{l+4}) \mid (q^2 - 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q + 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q - 1).$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

•
$$\operatorname{ord}(\gamma) \mid (q^2 + 1);$$

• $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$
• $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$
• ...

• $\operatorname{ord}(\gamma_{l+4}) \mid (q^2 - 1)$, $\operatorname{ord}(\gamma_{l+4}) \nmid (q + 1)$, $\operatorname{ord}(\gamma_{l+4}) \nmid (q - 1)$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

•
$$\operatorname{ord}(\gamma) \mid (q^2 + 1);$$

• $\operatorname{ord}(\gamma_1) \mid (q^2 - 1), \operatorname{ord}(\gamma_1) \nmid (q + 1), \operatorname{ord}(\gamma_1) \nmid (q - 1);$
• $\operatorname{ord}(\gamma_2) \mid (q^2 - 1), \operatorname{ord}(\gamma_2) \nmid (q + 1), \operatorname{ord}(\gamma_2) \nmid (q - 1);$
• ...

•
$$\operatorname{ord}(\gamma_{l+4}) \mid (q^2 - 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q + 1), \operatorname{ord}(\gamma_{l+4}) \nmid (q - 1).$$

・ロン ・四と ・ヨン ・ヨン 三日

• For other properties, see (Ugolini, 2018).

$$\vartheta(\alpha)$$
 or $\vartheta^{l+2}(\alpha)$

for some α in the cyclic group C_{q^2+1} of order q^2+1 in $\mathbb{F}_{q^4}^*$.

• There are also some relations between the order and the trace of the iterates.

- For other properties, see (Ugolini, 2018).
- For example, we can deduce that any element in the cyclic group C_{q+1} of order q + 1 in ℝ^{*}_{q²} is expressible as

$$\vartheta(\alpha)$$
 or $\vartheta^{l+2}(\alpha)$

for some α in the cyclic group C_{q^2+1} of order q^2+1 in $\mathbb{F}_{a^4}^*$.

• There are also some relations between the order and the trace of the iterates.

- For other properties, see (Ugolini, 2018).
- For example, we can deduce that any element in the cyclic group C_{q+1} of order q + 1 in F^{*}_{q²} is expressible as

$$\vartheta(\alpha)$$
 or $\vartheta^{l+2}(\alpha)$

for some α in the cyclic group C_{q^2+1} of order q^2+1 in $\mathbb{F}_{q^4}^*$.

• There are also some relations between the order and the trace of the iterates.

- I. F. Blake, X. Gao, A. J. Menezes, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian
 Applications of finite fields
 Kluwer Academic Publishers, 1993.
- A. Blokhuis, X. Cao, W.-S. Chou, X.-D. Hou On the roots of certain Dickson polynomials *Journal of Number Theory*, 188, pp. 229–246, 2018.
- J. von zur Gathen and I. Shparlinski
 Gauß periods in finite fields
 Proceedings of the fifth International Conference on Finite
 Fields and Applications, Augsburg, 1999, pp. 162–177, 2001.

🔋 I. Shparlinski

On the multiplicative orders of γ and $\gamma + \gamma^{-1}$ over finite fields Finite Fields and Their Applications, 7, pp. 327–331, 2001.

S. Ugolini

Graphs associated with the map $x \mapsto x + x^{-1}$ in finite fields of characteristic two

Theory and Applications of Finite Fields, Contemp. Math., 579, pp. 187–204, 2012.

S. Ugolini

Some notes on the multiplicative order of $\alpha + \alpha^{-1}$ in finite fields of characteristic two

Preprint ArXiv, 2018.