Affine semigroups with maximal projective dimension

Alberto Vigneron-Tenorio¹

Dpto. Matemáticas Universidad de Cádiz

Semigroups and Groups, Automata, Logics Cremona, 10-13/06/2019

Joint work with J. I. García-García, I. Ojeda and J.C. Rosales, arXiv:1903.11028

¹Partially supported by MTM2015-65764-C3-1-P (MINECO/FEDER, UE), MTM2017-84890-P (MINECO/FEDER, UE) and Junta de Andalucía group FQM-366.

Outline

- Minimal free resolution of the semigroup algebra.
- ② On affine semigroups with maximal projective dimension.
- Gluing of MPD-semigroups.
- On the irreducibility of MPD-semigroups.

Notation

 $S \subset \mathbb{N}^d$ affine semigroup minimally generated by $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Let \mathbb{k} be an arbitrary field.

- Semigroup algebra: $\mathbb{k}[S] := \bigoplus_{\mathbf{a} \in S} \mathbb{k}\{\mathbf{a}\} \text{ with } \{\mathbf{a}\} \cdot \{\mathbf{b}\} = \{\mathbf{a} + \mathbf{b}\}.$
- S-graded polynomial ring: $R := \mathbb{k}[x_1, \dots, x_n]$, S-degree of x_i is \mathbf{a}_i .

Definition

Given S-graded surjective k-algebra morphism

$$\varphi_0: R \longrightarrow \mathbb{k}[S]; x_i \longmapsto \{\mathbf{a}_i\},$$

 $I_S := \ker(\varphi_0)$ is the S-homogeneous binomial ideal called **ideal of** S.

Theorem

$$I_S = \left\langle \left\{ \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} : \sum_{i=1}^n u_i \mathbf{a}_i = \sum_{i=1}^n v_i \mathbf{a}_i \right\} \right\rangle.$$

Using S-graded Nakayama's lemma recursively $\downarrow \downarrow$ minimal free S-graded resolution $\downarrow \downarrow$

$$\cdots \longrightarrow R^{s_{j+1}} \stackrel{\varphi_{j+1}}{\longrightarrow} R^{s_j} \longrightarrow \cdots \longrightarrow R^{s_2} \stackrel{\varphi_2}{\longrightarrow} R^{s_1} \stackrel{\varphi_1}{\longrightarrow} R \stackrel{\varphi_0}{\longrightarrow} \mathbb{k}[S] \longrightarrow 0,$$

where, fixed $\{\mathbf{f}_1^{(j)}, \dots, \mathbf{f}_{s_{j+1}}^{(j)}\}$ a minimal generating set for *jth*-module of syzygies $N_j := \ker(\varphi_j)$:

- $N_0 = I_S$;
- \mathbb{k} -algebra homomorphism $\varphi_{j+1}: R^{\mathbf{s}_{j+1}} \longrightarrow R^{\mathbf{s}_j}; \ \varphi_{j+1}(\mathbf{e}_i^{(j+1)}) = \mathbf{f}_i^{(j)}$.

Theorem

- Noetherian property of $R \rightsquigarrow s_{i+1}$ is finite.
- Hilbert's syzygy theorem & Auslander-Buchsbaum's formula $\rightsquigarrow s_j = 0, \forall j > p = n \operatorname{depth}_R \mathbb{k}[S].$
- $n-1 \ge p$.

BRIALES, E.; CAMPILLO, A.; MARIJUÁN, C.; PISÓN, P. Combinatorics of syzygies for semigroup algebras. Collect. Math. 49(2-3) (1998), 239-256

Using S-graded Nakayama's lemma recursively $\downarrow \downarrow$ minimal free S-graded resolution $\downarrow \downarrow$

$$0 \longrightarrow R^{s_p} \xrightarrow{\varphi_p} R^{s_{p-1}} \longrightarrow \cdots \longrightarrow R^{s_2} \xrightarrow{\varphi_2} R^{s_1} \xrightarrow{\varphi_1} R \xrightarrow{\varphi_0} \mathbb{k}[S] \longrightarrow 0,$$

Definition

- The integer p is called the **projective dimension of** S.
- S is a maximal projective dimension semigroup (MPD-semigroup) if its projective dimension is n-1.

Problem

Which are the maximal projective dimension semigroups?

Notation

 $S \subset \mathbb{N}^d$ affine semigroup minimally generated by $\mathcal{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

$$\operatorname{pos}(S) := \left\{ \sum_{i=1}^{n} \lambda_{i} \mathbf{a}_{i} \mid \lambda_{i} \in \mathbb{Q}_{\geq 0}, i = 1, \dots, n \right\} \subset \mathbb{Q}_{\geq 0}^{d}$$

 $\mathcal{H}(S) := (pos(S) \setminus S) \cap \mathbb{N}^d$.

Definition

 $\mathbf{a} \in \mathcal{H}(S)$ pseudo-Frobenius element of $S \iff \mathbf{a} + S \setminus \{0\} \subseteq S$.

$$PF(S) := \{ \mathbf{a} \in \mathcal{H}(S) \mid \mathbf{a} + S \setminus \{0\} \subseteq S \}$$

Theorem

S is a MPD-semigroup
$$\iff$$
 PF(S) $\neq \varnothing$

In this case, PF(S) has finite cardinality.

Corollary

Let S be a MPD-semigroup,

$$\mathbf{b} \in S$$
 is the S -degree of the $(n-1)$ th minimal syzygy of $\mathbb{k}[S]$

$$\mathbf{b} \in {\mathbf{a} + \sum_{i=1}^{n} \mathbf{a}_i, \ \mathbf{a} \in \mathrm{PF}(S)}.$$

Example

Computing S-graded minimal free resolution of k[S] using Singular:

```
LIB "toric.lib";

LIB "multigrading.lib";

ring r = 0, (x(1..10)), dp;

intmat A[2][10] =

3, 4, 4, 5, 7, 7, 7, 7, 8, 9,

0, 1, 2, 2, 0, 3, 4, 5, 1, 2;

setBaseMultigrading(A);

ideal i = toric_ideal(A,"ect");

def L = multiDegResolution(i,9,0);
```

Singular's command multiDeg(L[9]) ↔

degrees minimal generators of 9-th syzygy module \rightsquigarrow (72, 20) and (73, 21).

pseudo-Frobenius elements of S

$$\rightsquigarrow$$
 (11,0) = (72,20) - (61,20)

$$\Rightarrow$$
 (12, 1) = (73, 21) - (61, 20).

Theorem

If $\mathbf{b} \in S$ is an S-degree of a minimal j-syzygy of $\mathbb{k}[S]$, then $\mathbf{b} = A\mathbf{u}$ with $\mathbf{u} \in \mathbb{N}^n$ such that

$$||\mathbf{u}||_1 \le (1+4||A||_{\infty})^{(dimrow(A))(d_j-1)} + (j+1)d_j - 1,$$

where
$$d_j = \begin{pmatrix} d \\ j+1 \end{pmatrix}$$
.

Briales-Morales, E.; Pisón-Casares, P.; Vigneron-Tenorio, A. The regularity of a toric variety. Journal of Algebra 237(1) (2001), 165–185.

Corollary

Let S be a MPD-semigroup. If $\mathbf{a} \in \mathrm{PF}(S)$, then $\mathbf{a} = A(\mathbf{u} - \mathbf{1})$ for some $\mathbf{u} \in \mathbb{N}^d$ satisfying

$$||\mathbf{u}||_1 \le (1+4||A||_{\infty})^{(dimrow(A))(d-1)} + (d-1)d - 1.$$

Notation

Given an affine semigroup $S \subseteq \mathbb{N}^d$, denote by G(S) the group spanned by S, that is,

$$G(S) = \{\mathbf{a} - \mathbf{b} \in \mathbb{Z}^m \mid \mathbf{a}, \mathbf{b} \in S\}.$$

Definition

Let $A_1 \cup A_2 \subset \mathbb{N}^d$ be the minimal generating set of S, and S_i be the semigroup generated by A_i , $i \in \{1,2\}$.

S is the gluing of S_1 and S_2 by **d** $(S = S_1 +_{\mathbf{d}} S_2)$ if

- $\mathbf{d} \in S_1 \cap S_2$,
- $G(S_1) \cap G(S_2) = \mathbf{d}\mathbb{Z}$.

Theorem (Assume that $S = S_1 +_{\mathbf{d}} S_2$)

 S_1 and S_2 MPD-semigroups, and $\mathbf{b}_i \in \mathrm{PF}(S_i), \ i=1,2,$ then

- \Rightarrow **b**₁ + **b**₂ + **d** $\in PF(S)$
- \Rightarrow S is a MPD-semigroup.

Example (Gluing MPD-semigroups)

- $S_1 = \{(x, y, z) \in \mathbb{N}^3 \mid z = 0\} \setminus \{(1, 0, 0)\}$ minimally generated by $\{(2, 0, 0), (3, 0, 0), (0, 1, 0), (1, 1, 0)\},$
- $S_2=\{(x,y,z)\in\mathbb{N}^3\mid x=y\}\setminus\{(0,0,1)\}$ minimally generated by $\{(1,1,0),(1,1,1),(0,0,2),(0,0,3)\}$

In that case, $(1,0,0) \in PF(S_1)$ and $(0,0,1) \in PF(S_2)$.

$$S_1+_{(1,1,0)}S_2$$
 is minimally generated by $\{(2,0,0),(3,0,0),(0,1,0),(1,1,0),(1,1,1),(0,0,2),(0,0,3)\}$

$$(1,0,0) + (0,0,1) + (1,1,0) = (2,1,1)$$
 belongs to $PF(S_1 +_{(1,1,0)} S_2)$.

Let $S\subset \mathbb{N}^d$ be a semigroup, S is **irreducible** if cannot be expressed as an intersection of two semigroups containing it properly.

Theorem

S irreducible MPD-semigroup

either
$$PF(S) = \{\mathbf{f}\}\ or\ PF(S) = \{\mathbf{f},\mathbf{f}/2\}$$

- $(pos(S) \setminus S) \cap \mathbb{N}^d$ finite $\leadsto S$ is called C-semigroup (C = pos(S)).
- S C—semigroup is C—**irreducible** if $\forall S_1$ and S_2 affine semigroups containing S with $pos(S_1) = pos(S_2) = pos(S)$, $S \neq S_1 \cap S_2$.

Proposition

S C-semigroup such that
$$PF(S) = \{f\}$$
 or $PF(S) = \{f, f/2\}$

S is C-irreducible.

Example

Thanks for your attention!

