Amenability of semigroups SandGAL 2019, Cremona

Yong Zhang

Department of Mathematics University of Manitoba, Winnipeg, Canada

June 11, 2019

Y. Zhang (University of Manitoba)

Amenability of semigroups

Let *S* be a semigroup. A function $f: S \to \mathbb{R}$ is bounded if there is M > 0 such that $|f(s)| \le M$ for all $s \in S$.

Let *S* be a semigroup. A function $f: S \to \mathbb{R}$ is bounded if there is M > 0 such that $|f(s)| \le M$ for all $s \in S$.

Denote by $\ell^{\infty}(S)$ the space of all bounded functions on *S*. Then $\ell^{\infty}(S)$ is a Banach space with the norm defined by

$$\|f\| = \sup_{s\in S} |f(s)|$$
 $(f \in \ell^{\infty}(S)).$

Let *S* be a semigroup. A function $f: S \to \mathbb{R}$ is bounded if there is M > 0 such that $|f(s)| \le M$ for all $s \in S$.

Denote by $\ell^{\infty}(S)$ the space of all bounded functions on *S*. Then $\ell^{\infty}(S)$ is a Banach space with the norm defined by

$$\|f\| = \sup_{s\in S} |f(s)|$$
 $(f \in \ell^{\infty}(S)).$

• For $f \in \ell^{\infty}(S)$ and $t \in S$, the left translate of f by t is the function $l_t f \in \ell^{\infty}(S)$ defined by $l_t f(s) = f(ts)$.

Let *S* be a semigroup. A function $f: S \to \mathbb{R}$ is bounded if there is M > 0 such that $|f(s)| \le M$ for all $s \in S$.

Denote by $\ell^{\infty}(S)$ the space of all bounded functions on *S*. Then $\ell^{\infty}(S)$ is a Banach space with the norm defined by

$$\|f\| = \sup_{s\in S} |f(s)|$$
 $(f \in \ell^{\infty}(S)).$

- For $f \in \ell^{\infty}(S)$ and $t \in S$, the left translate of f by t is the function $I_t f \in \ell^{\infty}(S)$ defined by $I_t f(s) = f(ts)$.
- A subspace X of $\ell^{\infty}(S)$ is left invariant if $I_t f \in X$ for all $f \in X$ and $t \in S$.

Let *S* be a semigroup. A function $f: S \to \mathbb{R}$ is bounded if there is M > 0 such that $|f(s)| \le M$ for all $s \in S$.

Denote by $\ell^{\infty}(S)$ the space of all bounded functions on *S*. Then $\ell^{\infty}(S)$ is a Banach space with the norm defined by

$$\|f\| = \sup_{s\in S} |f(s)|$$
 $(f \in \ell^{\infty}(S)).$

- For $f \in \ell^{\infty}(S)$ and $t \in S$, the left translate of f by t is the function $l_t f \in \ell^{\infty}(S)$ defined by $l_t f(s) = f(ts)$.
- A subspace X of $\ell^{\infty}(S)$ is left invariant if $I_t f \in X$ for all $f \in X$ and $t \in S$.
- We can consider the right translate r_tf of f and right invariant subspaces of ℓ[∞](S) similarly.

Let *X* be a Banach space. A bounded linear functional on *X* is a function $F: X \to \mathbb{R}$ satisfying

 $F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$ $(x, y \in X, \alpha, \beta \in \mathbb{R})$

and that there is $M_F \ge 0$ such that

 $|F(x)| \le M_F ||x||$ for all $x \in X$.

Let *X* be a Banach space. A bounded linear functional on *X* is a function $F: X \to \mathbb{R}$ satisfying

 $F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$ $(x, y \in X, \alpha, \beta \in \mathbb{R})$

and that there is $M_F \ge 0$ such that

$$|F(x)| \leq M_F ||x||$$
 for all $x \in X$.

Denote by ||F|| the smallest M_F satisfying the above inequality.

Let *X* be a Banach space. A bounded linear functional on *X* is a function $F: X \to \mathbb{R}$ satisfying

 $F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$ $(x, y \in X, \alpha, \beta \in \mathbb{R})$

and that there is $M_F \ge 0$ such that

$$|F(x)| \leq M_F ||x||$$
 for all $x \in X$.

Denote by ||F|| the smallest M_F satisfying the above inequality.

All bounded linear functionals on X form a vector space. We denote it by X^* .

Let *X* be a Banach space. A bounded linear functional on *X* is a function $F: X \to \mathbb{R}$ satisfying

 $F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$ $(x, y \in X, \alpha, \beta \in \mathbb{R})$

and that there is $M_F \ge 0$ such that

$$|F(x)| \leq M_F ||x||$$
 for all $x \in X$.

Denote by ||F|| the smallest M_F satisfying the above inequality.

All bounded linear functionals on X form a vector space. We denote it by X^* .

 X^* is indeed a Banach space with the norm ||F|| ($F \in X^*$) defined above. We call X^* the dual space of X.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

 $\|m\| = m(1) = 1$, and $m(l_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

||m|| = m(1) = 1, and $m(I_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Example. Let *G* be a finite group. Then taking average value $m(f) := \frac{1}{|G|} \sum_{x \in G} f(x)$ defines a left invariant mean on $\ell^{\infty}(G)$.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

||m|| = m(1) = 1, and $m(I_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Example. Let *G* be a finite group. Then taking average value $m(f) := \frac{1}{|G|} \sum_{x \in G} f(x)$ defines a left invariant mean on $\ell^{\infty}(G)$.

Definition 1 (M.M. Day, 1957)

The semigroup S is called left amenable if there is a LIM on $\ell^{\infty}(S)$.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

 $\|m\| = m(1) = 1$, and $m(I_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Example. Let *G* be a finite group. Then taking average value $m(f) := \frac{1}{|G|} \sum_{x \in G} f(x)$ defines a left invariant mean on $\ell^{\infty}(G)$.

Definition 1 (M.M. Day, 1957)

The semigroup S is called left amenable if there is a LIM on $\ell^{\infty}(S)$.

• Every commutative semigroup is left amenable.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

 $\|m\| = m(1) = 1$, and $m(I_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Example. Let *G* be a finite group. Then taking average value $m(f) := \frac{1}{|G|} \sum_{x \in G} f(x)$ defines a left invariant mean on $\ell^{\infty}(G)$.

Definition 1 (M.M. Day, 1957)

The semigroup S is called left amenable if there is a LIM on $\ell^{\infty}(S)$.

- Every commutative semigroup is left amenable.
- Every finite group is left amenable, so is any solvable group.

Let *S* be a semigroup. Denote by **1** the constant function $\mathbf{1}(s) = 1$ ($s \in S$). Clearly, $\mathbf{1} \in \ell^{\infty}(S)$.

A left invariant mean (abbreviated LIM) on $\ell^{\infty}(S)$ is an element $m \in \ell^{\infty}(S)^*$ satisfying

 $\|m\| = m(1) = 1$, and $m(I_t f) = m(f)$ for all $f \in \ell^{\infty}(S)$ and $t \in S$.

Example. Let *G* be a finite group. Then taking average value $m(f) := \frac{1}{|G|} \sum_{x \in G} f(x)$ defines a left invariant mean on $\ell^{\infty}(G)$.

Definition 1 (M.M. Day, 1957)

The semigroup S is called left amenable if there is a LIM on $\ell^{\infty}(S)$.

- Every commutative semigroup is left amenable.
- Every finite group is left amenable, so is any solvable group.
- The free semigroup on two generators is not left amenable, neither is the free group on two generators.

Y. Zhang (University of Manitoba)

Amenability of semigroups

The semigroup *S* is left reversible if every pair of right ideals has a nonempty intersection, i.e. $sS \cap tS \neq \emptyset$ for all $s, t \in S$.

The semigroup *S* is left reversible if every pair of right ideals has a nonempty intersection, i.e. $sS \cap tS \neq \emptyset$ for all $s, t \in S$.

• Every commutative semigroup is left reversible.

The semigroup *S* is left reversible if every pair of right ideals has a nonempty intersection, i.e. $sS \cap tS \neq \emptyset$ for all $s, t \in S$.

- Every commutative semigroup is left reversible.
- Every group is left reversible.

The semigroup *S* is left reversible if every pair of right ideals has a nonempty intersection, i.e. $sS \cap tS \neq \emptyset$ for all $s, t \in S$.

- Every commutative semigroup is left reversible.
- Every group is left reversible.

Proposition 2

If S is left amenable, then it is left reversible.

The semigroup *S* is left reversible if every pair of right ideals has a nonempty intersection, i.e. $sS \cap tS \neq \emptyset$ for all $s, t \in S$.

- Every commutative semigroup is left reversible.
- Every group is left reversible.

Proposition 2

If S is left amenable, then it is left reversible.

Proof.

Let *m* be a LIM on $\ell^{\infty}(S)$. If *S* were not left reversible, then there are $a, b \in S$ such that $aS \cap bS = \emptyset$.

Let *f* be the characteristic function of *aS*, i.e. f(s) = 1 for $s \in aS$ and = 0 for $s \notin aS$. Then $l_a f = 1$ and $l_b f = 0$. Since *m* is left invariant we have

$$m(f) = m(l_a f) = m(\mathbf{1}) = \mathbf{1}$$
, and $m(f) = m(l_b f) = m(\mathbf{0}) = \mathbf{0}$.

This is a contradiction.

Y. Zhang (University of Manitoba)

A function $f \in \ell^{\infty}(S)$ is called almost periodic on S if its left orbit

$$\mathcal{LO}(f) = \{\{l_{\boldsymbol{s}}(f): \ \boldsymbol{s} \in \boldsymbol{S}\}$$

is precompact in $\ell^{\infty}(S)$.

A function $f \in \ell^{\infty}(S)$ is called almost periodic on S if its left orbit

$$\mathcal{LO}(f) = \{\{I_{s}(f): s \in S\}$$

is precompact in $\ell^{\infty}(S)$.

Denote by AP(S) the set of all almost periodic functions on S. Then

AP(S) is a left invariant closed subspace of ℓ[∞](S),
1 ∈ AP(S).

A function $f \in \ell^{\infty}(S)$ is called almost periodic on S if its left orbit

$$\mathcal{LO}(f) = \{\{I_{s}(f): s \in S\}$$

is precompact in $\ell^{\infty}(S)$.

Denote by AP(S) the set of all almost periodic functions on S. Then

- AP(S) is a left invariant closed subspace of $\ell^{\infty}(S)$,
- **1** ∈ *AP*(*S*).

A left invariant mean on AP(S) is an element $m \in AP(S)^*$ satisfying

||m|| = m(1) = 1, and $m(l_t f) = m(f)$ for all $f \in AP(S)$ and $t \in S$.

Let X be a Banach space. The weak topology of X is the topology on X with the subbase the sets

$$\mathcal{N}_{(\mathbf{X},\mathbf{F},\varepsilon)} = \{\mathbf{y} \in \mathbf{X} : |\mathbf{F}(\mathbf{y}-\mathbf{x})| < \varepsilon\},\$$

where $x \in X$, $F \in X^*$ and $\varepsilon > 0$.

Let X be a Banach space. The weak topology of X is the topology on X with the subbase the sets

$$\mathcal{N}_{(x,F,\varepsilon)} = \{ y \in X : |F(y-x)| < \varepsilon \},$$

where $x \in X$, $F \in X^*$ and $\varepsilon > 0$.

A function $f \in \ell^{\infty}(S)$ is called weakly almost periodic if its left orbit

$$\mathcal{LO}(f) = \{\{l_{s}(f): s \in S\}\}$$

is precompact in the weak topology of $\ell^{\infty}(S)$.

Let X be a Banach space. The weak topology of X is the topology on X with the subbase the sets

$$\mathcal{N}_{(x,F,\varepsilon)} = \{ y \in X : |F(y-x)| < \varepsilon \},$$

where $x \in X$, $F \in X^*$ and $\varepsilon > 0$.

A function $f \in \ell^{\infty}(S)$ is called weakly almost periodic if its left orbit

$$\mathcal{LO}(f) = \{\{I_{s}(f): s \in S\}$$

is precompact in the weak topology of $\ell^{\infty}(S)$.

Denote by WAP(S) the set of all weakly almost periodic functions on *S*.

Let X be a Banach space. The weak topology of X is the topology on X with the subbase the sets

$$\mathcal{N}_{(x,F,\varepsilon)} = \{ y \in X : |F(y-x)| < \varepsilon \},$$

where $x \in X$, $F \in X^*$ and $\varepsilon > 0$.

A function $f \in \ell^{\infty}(S)$ is called weakly almost periodic if its left orbit

$$\mathcal{LO}(f) = \{\{I_{s}(f): s \in S\}$$

is precompact in the weak topology of $\ell^{\infty}(S)$.

Denote by WAP(S) the set of all weakly almost periodic functions on S. Then

- WAP(S) is a left invariant closed subspace of $\ell^{\infty}(S)$,
- $AP(S) \subset WAP(S)$.

Open questions

The following implications are well-known.

- If *S* is left amenable, then it is left reversible.
- **2** (R. Hsu, 1985) If S is left reversible then WAP(S) has a LIM.
- If WAP(S) has a LIM, then AP(S) has a LIM.

Open questions

The following implications are well-known.

- If *S* is left amenable, then it is left reversible.
- **2** (R. Hsu, 1985) If S is left reversible then WAP(S) has a LIM.
- If WAP(S) has a LIM, then AP(S) has a LIM.

The converse of (1) is untrue. For example, a group is always left reversible but there exist non-amenable groups.

Open questions

The following implications are well-known.

- If *S* is left amenable, then it is left reversible.
- **2** (R. Hsu, 1985) If S is left reversible then WAP(S) has a LIM.
- If WAP(S) has a LIM, then AP(S) has a LIM.

The converse of (1) is untrue. For example, a group is always left reversible but there exist non-amenable groups.

Whether the converses of (2) and (3) hold are long-standing open problems.

The bicyclic semigroup is the unital semigroup generated by two elements *p* and *q* such that pq = e, where *e* is the unit. We denote it by $S_1 = \langle e, p, q : pq = e \rangle$.

The bicyclic semigroup is the unital semigroup generated by two elements *p* and *q* such that pq = e, where *e* is the unit. We denote it by $S_1 = \langle e, p, q : pq = e \rangle$.

• (Duncan-Namioka, 78) the semigroup S_1 is left amenable.

The bicyclic semigroup is the unital semigroup generated by two elements *p* and *q* such that pq = e, where *e* is the unit. We denote it by $S_1 = \langle e, p, q : pq = e \rangle$.

• (Duncan-Namioka, 78) the semigroup S_1 is left amenable.

We investigate partially bicyclic semigroups

 $S_2 = \langle e, a, b, c : ab = ac = e \rangle$ and $S_{1,1} = \langle e, a, b, c, d : ab = cd = e \rangle$

where *e* denotes the unit element in each case.

The bicyclic semigroup is the unital semigroup generated by two elements *p* and *q* such that pq = e, where *e* is the unit. We denote it by $S_1 = \langle e, p, q : pq = e \rangle$.

• (Duncan-Namioka, 78) the semigroup S_1 is left amenable.

We investigate partially bicyclic semigroups

 $S_2 = \langle e, a, b, c : ab = ac = e \rangle$ and $S_{1,1} = \langle e, a, b, c, d : ab = cd = e \rangle$

where *e* denotes the unit element in each case.

• (Mitchill, 1984) S_2 and $S_{1,1}$ are not left reversible but $AP(S_2)$ and $AP(S_{1,1})$ both have LIM.

The bicyclic semigroup is the unital semigroup generated by two elements *p* and *q* such that pq = e, where *e* is the unit. We denote it by $S_1 = \langle e, p, q : pq = e \rangle$.

• (Duncan-Namioka, 78) the semigroup S_1 is left amenable.

We investigate partially bicyclic semigroups

 $S_2 = \langle e, a, b, c : ab = ac = e \rangle$ and $S_{1,1} = \langle e, a, b, c, d : ab = cd = e \rangle$

where *e* denotes the unit element in each case.

- (Mitchill, 1984) S_2 and $S_{1,1}$ are not left reversible but $AP(S_2)$ and $AP(S_{1,1})$ both have LIM.
- (Lau-Zhang) S₂ is right amenable (but not left amenable); while S_{1,1} is neither left no right amenable,

where by right amenable for *S* we mean that there is a right invariant mean on $\ell^{\infty}(S)$.

Answer to the open problems

With some complicated arguments we get the following results.

Answer to the open problems

With some complicated arguments we get the following results.

Theorem 3 (Lau-Zhang)

• $WAP(S_2)$ has a LIM but S_2 is not left reversible.

• $WAP(S_{1,1})$ has no LIM but $AP(S_{1,1})$ has a LIM.

Answer to the open problems

With some complicated arguments we get the following results.

Theorem 3 (Lau-Zhang)

- $WAP(S_2)$ has a LIM but S_2 is not left reversible.
- $WAP(S_{1,1})$ has no LIM but $AP(S_{1,1})$ has a LIM.

With Theorem 3 we have the following complete relation chains.

S is I. amen. \Rightarrow S is I. rev. \Rightarrow WAP((S) has LIM \Rightarrow AP(S) has LIM

S is I. amen. \notin S is I. rev. \notin WAP((S) has LIM \notin AP(S) has LIM

Thank You!