Weierstrass semigroups and applications in Coding Theory

Giovanni Zini (joint work with D. Bartoli and M. Montanucci)

Università di Milano-Bicocca

SandGAL 2019

Outline

- error-correcting codes
- 2 algebraic curves and AG codes
- Weierstrass semigroup at one point and AG codes

- examples from the Suzuki curve
- Weierstrass semigroup at many points and AG codes

Codes

$$\mathcal{A}$$
: finite set n : positive integer $\mathcal{C} \subset \mathcal{A}^n$ for any $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathcal{A}^n$:
$$d(x,y) := |\{i \in \{1, \dots, n\} : x_i \neq y_i\}| \quad \text{Hamming distance}$$

$$d = d(\mathcal{C}) := \min\{d(x,y) \mid x,y \in \mathcal{C}, x \neq y\} \qquad t := |\frac{d-1}{2}|$$

- C is a block code of length n over the alphabet A
- C has minimum distance d and corrects up to t errors
- $R := \frac{\log_{|A|} |C|}{n}$ information rate $D := \frac{d}{n}$ relative minimum distance

Goal: maximize R and D

Singleton bound: $|C| \leq |A|^{n-d+1}$

Linear codes

 $\mathcal{A} = \mathbb{F}_q$ finite field with q elements

 $C: \mathbb{F}_q$ -linear subspace of \mathbb{F}_q^n

$$k := \dim_{\mathbb{F}_q} C \Rightarrow |C| = q^k$$

$$d := \min_{x,y \in C, \ x \neq y} d(x,y) = \min_{x \in C} |\{i \in \{1,\dots,n\} : x_i \neq 0\}|$$

C is a linear $[n, k, d]_q$ -code

Singleton bound:
$$k + n \le n + 1$$

relative Singleton defect:
$$\Delta := \frac{n+1-(k+d)}{n} \ge 0$$

Goal: minimize Δ

Several families of linear codes:

Hamming, Golay, BCH, Reed-Solomon, Reed-Muller ...

Algebraic Geometry codes from algebraic curves over finite fields

Algebraic curves over finite fields

• $\mathcal{X} \subseteq \mathrm{PG}(r,\overline{\mathbb{F}}_q)$: projective, geometrically irreducible, algebraic curve defined over \mathbb{F}_q

$$\mathcal{X}: \begin{cases} f_1(X_1, \dots, X_r) = 0 \\ \vdots \\ f_{r-1}(X_1, \dots, X_r) = 0 \end{cases} \qquad f_1, \dots, f_{r-1} \in \mathbb{F}_q[X_1, \dots, X_r]$$

- ullet $g=g(\mathcal{X})$: (geometric) genus of \mathcal{X}
- ullet $\mathcal{X}(\mathbb{F}_q)$: (finite) set of \mathbb{F}_q -rational places of \mathcal{X}

If P is a non-singular points of \mathcal{X} :

 \Rightarrow there is a unique place of ${\mathcal X}$ centered at P

If \mathcal{X} is non-singular:

$$\Rightarrow \mathcal{X}(\mathbb{F}_q) = \mathcal{X} \cap \mathrm{PG}(r,q)$$
: set of \mathbb{F}_q -rational points of \mathcal{X}

Algebraic Geometric codes: ingredients

- \mathcal{X} : \mathbb{F}_q -rational curve
- $\mathbb{F}_q(\mathcal{X})$: field of \mathbb{F}_q -rational functions over \mathcal{X} (field of fractions of the coordinate ring of \mathcal{X} over \mathbb{F}_q)
- Group of \mathbb{F}_q -rational divisors of $\mathcal{X}: D = \sum_{P \in \mathcal{X}(\mathbb{F}_q)} n_P P$, $n_P \in \mathbb{Z}$ (free group generated by the \mathbb{F}_q -rational places)
- Principal divisor of $f \in \mathbb{F}_q(\mathcal{X}) \setminus \{0\}$: collects zeros and poles of f, counted with multiplicity

$$(f) = (f)_0 - (f)_\infty = \sum_{P: P \text{ is a zero of } f} v_P P - \sum_{P: P \text{ is a pole of } f} (-v_P) P$$

ullet Riemann-Roch space of the \mathbb{F}_q -rational divisor $D:\mathbb{F}_q$ -vector space

$$\mathcal{L}(D) = \{ f \in \mathbb{F}_q(\mathcal{X}) \setminus \{0\} \mid (f) + D \ge 0 \} \cup \{0\}$$

Algebraic Geometric codes

- \mathcal{X} : \mathbb{F}_q -rational curve
- $D = P_1 + \cdots + P_n$ with $P_i \in \mathcal{X}(\mathbb{F}_q)$, $P_i \neq P_j$ for $i \neq j$
- ullet G: another \mathbb{F}_q -rational divisor with $P_1,\ldots,P_n\notin \operatorname{supp}(G)$
- \mathbb{F}_a -linear evaluation map

$$e_D: \mathcal{L}(G) \to \mathbb{F}_q^n, \quad f \mapsto e_D(f) = (f(P_1), \dots, f(P_n))$$

ullet $\mathcal{C}_{\mathcal{L}}(D,\mathcal{G}):=\mathrm{Im}(e_D):$ (functional) Algebraic Geometric code

Algebraic Geometric codes: parameters

 $\mathcal{X}: \mathbb{F}_q$ -rational curve, $D = \sum_{i=1}^n P_i, \ P_i \in \mathcal{X}(\mathbb{F}_q)$ distinct places

 $G: \mathbb{F}_q$ -rational divisor of \mathcal{X} with $P_i \notin \operatorname{supp}(G)$

$$C_{\mathcal{L}}(D,G)$$
 is an $[n,k,d]_q$ -code

- If $\deg(\mathcal{X}) > 2g 2$, then rel. Singleton defect $\Delta \leq g/n$ \Rightarrow use curves with many \mathbb{F}_q -rat. points w.r.t. $g \Rightarrow \mathbb{F}_q$ -maximal curves
- Goppa lower bound on the minimum distance: $d \ge n \deg(G)$
- Distance: $k = \dim(\mathcal{L}(G)) \dim(\mathcal{L}(G D))$
- If deg(G) < n, then $k = \dim(\mathcal{L}(G))$

We focus on **one-point** codes: $\mathbf{G} = \mathbf{m} \, \mathbf{P}$ with $P \in \mathcal{X}(\mathbb{F}_q)$ and m < n

Weierstrass semigroup

$$g(\mathcal{X}) > 0$$
, $P \in \mathcal{X}(\mathbb{F}_q)$, $D = \sum_{i=1}^n P_i$, $G = mP$, $m < n$, $k = \dim(\mathcal{L}(mP))$

- $\mathcal{L}(mP) = \{ f \in \mathbb{F}_q(\mathcal{X}) \mid (f) \ge -mP \}$: functions with P as unique pole, with multiplicity at most m
- $H(P) = \{s \ge 0 \mid \exists f \in \mathbb{F}_q(\mathcal{X}) : (f)_{\infty} = sP\}$ Weierstrass semigroup at P, set of non-gaps (or pole numbers) at P
- $G(P) = \mathbb{N} \setminus H(P)$ set of gaps at P.
- |G(P)|: genus of the semigroup
- Weierstrass Gap Theorem:

$$|G(P)| = g(\mathcal{X}), \quad \min(G(P)) = 1, \quad \max(G(P)) \le 2g(\mathcal{X}) - 1$$

- H(P) is the same for almost all places P of \mathcal{X}
- ullet Weierstrass points : places with Weierstrass semigroup different from the one of almost all other places of ${\mathcal X}$

Weierstrass semigroup and dimension k of the code

$$g(\mathcal{X}) > 0, \ P \in \mathcal{X}(\mathbb{F}_q), \ D = \sum_{i=1}^n P_i, \ G = mP, \ m < n, \ k = \dim(\mathcal{L}(mP))$$
 $H(P) = \{\rho_1 = 0 < \rho_2 < \rho_3 < \ldots\}$ $i > 0, \quad \dim\mathcal{L}(\ell P) = \begin{cases} \dim\mathcal{L}((\ell-1)P) + 1 & \text{if } \ell \in H(P) \\ \dim\mathcal{L}((\ell-1)P) & \text{if } \ell \in G(P) \end{cases}$ $k = |\{\ell \in H(P) : \ell \leq m\}|$

Weierstrass semigroup \Rightarrow dimension of the code

explicit description of H(P), explicit description of G(P), minimal set of generator, Frobenius number, multiplicity...

Weierstrass semigroup and minimum distance d

$$g(\mathcal{X}) > 0, \quad P \in \mathcal{X}(\mathbb{F}_q), \quad D = \sum_{i=1}^n P_i, \quad G : \mathbb{F}_q\text{-rat. div.}, \ P_i \notin \operatorname{supp}(G)$$
 $H(P) = \{ \rho_1 = 0 < \rho_2 < \rho_3 < \ldots \}$
 $C_{\mathcal{L}}(D,G)^{\perp} = \{ x \in \mathbb{F}_q^n \mid \langle x,y \rangle = 0 \ \forall y \in C_{\mathcal{L}}(D,G) \} \text{ dual code}$
 $n \perp = n \qquad k^{\perp} = n - k \qquad d^{\perp} \geq ?$
 $\nu_{\ell} := |\{(i,j) \in \mathbb{N}^2 : \rho_i + \rho_j = \rho_{\ell+1}\}|$
 $C := C_{\mathcal{L}}(D,\rho_{\ell})^{\perp} \qquad d_{\mathrm{ORD}}(C) := \min\{\nu_m : m \geq \ell\}$
Order bound:
 $d^{\perp} \geq d_{\mathrm{ORD}}$

Weierstrass semigroup ⇒ minimum distance of the code

Weierstrass semigroups on the Suzuki curve

$$s\geq 1$$
, $q_0=2^s$, $q=2q_0^2=2^{2s+1}$ Suzuki curve over $\overline{\mathbb{F}}_q$: $\mathcal{S}_q: Y^q+Y=X^{q_0}(X^q+X)$

- $egin{aligned} \operatorname{Aut}(\mathcal{S}_q)&\cong\ ^2\!B_2(q), \quad g=q_0(q-1), \quad |\mathcal{S}_q(\mathbb{F}_{q^4})|=q^4+1+2q^2g \ &\Rightarrow \mathcal{S}_q ext{ is } \mathbb{F}_{q^4} ext{-maximal} \end{aligned}$
- $\mathbb{F}_{q^4}(\mathcal{S}_q) = \mathbb{F}_{q^4}(x,y)$, x,y: coordinate functions
- ullet $P_\infty \in \mathcal{S}_q(\mathbb{F}_q)$: unique point at infinity of \mathcal{S}_q
- in $\mathbb{F}_{q^4}(\mathcal{S}_q)$: x, y, $v := y^{2q_0} + x^{2q_0+1}$, $w := y^{2q_0}x + v^{2q_0}$
- $H(P_{\infty}) = \langle q, q+q_0, q+2q_0, q+2q_0+1 \rangle$ (Matthews 2004) $\Rightarrow H(P) = H(P_{\infty}) \ \forall P \in \mathcal{S}_q(\mathbb{F}_q)$, as $\mathcal{S}_q(\mathbb{F}_q)$ is an orbit of $\operatorname{Aut}(\mathcal{S}_q)$
- for $P \in \mathcal{S}_q \setminus \mathcal{S}_q(\mathbb{F}_q)$: H(P) = ?

Weierstrass semigroups on the Suzuki curve

$$S_q: Y^q+Y=X^{q_0}(X^q+X)$$

- {Weierstrass points of S_q } = $S_q(\mathbb{F}_q)$ (Fuhrmann-Torres 1998) $\Rightarrow H(P)$ is the same for all $P \in S_q \setminus S_q(\mathbb{F}_q)$ \Rightarrow let $P = (a, b) \in S_q(\mathbb{F}_{q^4}) \setminus S_q(\mathbb{F}_q)$
- ullet $\Phi:P\mapsto P^q$ Frobenius map on the places of \mathcal{S}_q
- ullet there exists $f_P \in \overline{\mathbb{F}}_q(\mathcal{S}_q)$ such that

$$(f_P) = qP + 2q_0\Phi(P) + \Phi^2(P) - (q + 2q_0 + 1)P_{\infty}$$

$$\Rightarrow (f_{\Phi(P)}) = q\Phi(P) + 2q_0\Phi^2(P) + \Phi^3(P) - (q + 2q_0 + 1)P_{\infty},$$

$$(f_P) = q\Phi^2(P) + 2q_0\Phi^3(P) + P - (q + 2q_0 + 1)P_{\infty},$$

$$(f_P) = q\Phi^3(P) + 2q_0P + \Phi(P) - (q + 2q_0 + 1)P_{\infty}.$$

• rational function t_P associated to the tangent line to S_q at P: $(t_P) = q_0 P + \Phi(P) + E - (q + q_0) P_{\infty} \text{ with } E \ge 0, P_{\infty}, \Phi^i(P) \notin \text{supp}(E)$

Weierstrass semigroups on the Suzuki curve

$$S_q: Y^q + Y = X^{q_0}(X^q + X)$$

with suitable $h, i, j, k, \ell \tilde{i}, \tilde{h} \in \mathbb{N}$, H(P) is given by the multiplicities at P of

$$\left(f_{\Phi(P)}^{i}\cdot f_{\Phi^{2}(P)}^{j}\cdot f_{\Phi^{3}(P)}^{k}\cdot t_{P}^{\ell}\right) \ / \ f_{P}^{h} \,, \qquad \qquad \left(f_{\Phi(P)}^{\tilde{i}}\cdot f_{\Phi^{3}(P)}^{\tilde{h}-q_{0}}\right) \ / \ \left(f_{P}^{\tilde{h}}\cdot f_{\Phi^{2}(P)}\right)$$

Theorem

 $P \in \mathcal{S}_a \setminus \mathcal{S}_a(\mathbb{F}_a)$, minimal set of generator for H(P):

$$\left\{hq - kq_0 - \lfloor (2h - k - 2)/2 \rfloor : h \in \{1, \dots, q_0\}, k \in \{0, \dots, 2h - 2\}\right\}$$

$$\cup \quad \Big\{ hq - (2(h-q_0)-1)q_0 - (q_0-1) \; : \; h \in \{q_0+1,\ldots,2q_0\} \Big\}$$

Application to the parameters of $C_{\mathcal{L}}(D, mP)$ and $C_{\mathcal{L}}(D, mP)^{\perp}$

with $D = \mathcal{S}_q(\mathbb{F}_{q^4}) \setminus \{P\} \Rightarrow \text{get examples of good codes}$

Weierstrass semigroup at many points and AG codes

generalization:

$$\mathcal{X}$$
: curve over \mathbb{F}_q , P_1,\ldots,P_t : distinct \mathbb{F}_q -rational places of \mathcal{X} $H(P_1,\ldots,P_t)$: Weierstrass semigroup at (P_1,\ldots,P_t) : $\left\{(s_1,\ldots,s_t)\in\mathbb{N}^t\mid\exists f\in\mathbb{F}_q(\mathcal{X}):(f)_\infty=s_1P_1+\cdots+s_t\in P_t\right\}$

- Gaps at (P_1, \ldots, P_t) : $G(P_1, \ldots, P_t) = \mathbb{N}^t \setminus H(P_1, \ldots, P_t)$ $G(P_1, \ldots, P_t) = \left\{ (s_1, \ldots, s_t) \in \mathbb{N}^t \text{ such that } \dim \mathcal{L}\left(\sum_{i=1}^t s_i P_i\right) = \dim \mathcal{L}\left(\left(\sum_{i=1}^t s_i P_i\right) P_j \text{ for some } j \in \{1, \ldots, t\} \right\}$
- Pure gaps at (P_1, \ldots, P_t) : $G_0(P_1, \ldots, P_t) = \{(s_1, \ldots, s_t) \in \mathbb{N}^t \text{ s.t. } \dim \mathcal{L}\left(\sum_{i=1}^t s_i P_i\right) = \dim \mathcal{L}\left(\left(\sum_{i=1}^t s_i P_i\right) P_j \text{ for all } j \in \{1, \ldots, t\}\right)$

Pure gaps give better lower bounds on the minimum distance of $C_{\mathcal{L}}(D, n_1P_1 + \cdots + n_tP_t)$

Thank you for your attention!