Wave-shaped round functions and primitive groups

Joint work with M. Calderini, R. Civino, M. Sala and I. Zappatore¹

Riccardo Aragona

DISIM, University of L'Aquila

SandGAL 2019

¹R. Aragona, M. Calderini, R. Civino, M. Sala, I. Zappatore, *Wave-Shaped Round Functions and Primitive Groups*, Advances in Mathematics of Communications 13(1), 67-88 (2019).

Block ciphers

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ be the message space

Block cipher

A block cipher C is a set of (bijective) encryption functions.

 $\{\varepsilon_k\}_{k\in\mathcal{K}}\subseteq \operatorname{Sym}(V),$

each of which is individuated by a key k in the space $\mathcal{K} = (\mathbb{F}_2)^{\kappa}$.

Block ciphers

Let $V \stackrel{\text{\tiny def}}{=} (\mathbb{F}_2)^n$ be the message space

Block cipher

A block cipher C is a set of (bijective) encryption functions.

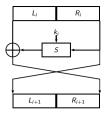
 $\{\varepsilon_k\}_{k\in\mathcal{K}}\subseteq \operatorname{Sym}(V),$

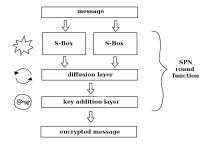
each of which is individuated by a key k in the space $\mathcal{K} = (\mathbb{F}_2)^{\kappa}$.

Most block ciphers are iterated block ciphers, where $\varepsilon_k = \varepsilon_{k_1} \cdots \varepsilon_{k_r}$, with $k_i \in V$, is the composition of many key-dependent permutations, known as round functions.

Iterated Block Cipher

Round of Feistel Network





Riccardo Aragona

Classical round function in a TB cipher

Let $V = V_1 \oplus V_2 \oplus \ldots \oplus V_b$ where each V_j is an *s*-dimensional brick. For each $c \in V$, the classical round function induced by *c* is a map $\varepsilon_c : V \to V$ where $\varepsilon_c = \gamma \lambda \sigma_c$ and

Y ∈ Sym(V) is a non-linear bricklayer transformation which acts in parallel way on each V_j

$$\gamma$$
 γ' γ' \cdots γ'

The map $\gamma': V_j \rightarrow V_j$ is traditionally called an S-box

- $\lambda \in Sym(V)$ is a linear map, called mixing layer
- ▶ $\sigma_c: V \to V, x \mapsto x + c$ represents the key addition, where + is the usual bitwise XOR on \mathbb{F}_2

Non-linearity

Let $f : (\mathbb{F}_2)^s \to (\mathbb{F}_2)^t$. Given $u \in (\mathbb{F}_2)^s$ and $v \in (\mathbb{F}_2)^t$ we define $\delta(f)_{u,v} \stackrel{\text{def}}{=} |\{x \in (\mathbb{F}_2)^s \mid x\hat{f}_u = xf + (x+u)f = v\}|$

The differential uniformity of f is

$$\delta(f) \stackrel{\text{\tiny def}}{=} \max_{u \in (\mathbb{F}_2)^s, u \neq 0 \atop v \in (\mathbb{F}_2)^t} \delta(f)_{u,v},$$

and f is said δ -differentially uniform if $\delta(f) = \delta$.

Riccardo Aragona

Non-linearity

Let $f : (\mathbb{F}_2)^s \to (\mathbb{F}_2)^t$. Given $u \in (\mathbb{F}_2)^s$ and $v \in (\mathbb{F}_2)^t$ we define $\delta(f)_{u,v} \stackrel{\text{def}}{=} |\{x \in (\mathbb{F}_2)^s \mid x\hat{f}_u = xf + (x+u)f = v\}|$

The differential uniformity of f is

$$\delta(f) \stackrel{\text{\tiny def}}{=} \max_{u \in (\mathbb{F}_2)^s, u \neq 0 \atop v \in (\mathbb{F}_2)^t} \delta(f)_{u,v},$$

and f is said δ -differentially uniform if $\delta(f) = \delta$.

Note that δ -differentially uniform functions with small δ are "farther" from being linear (when f is linear $\delta = 2^s$).

2-differentially uniform S-Boxes are called Almost Perfect Non-linear (APN)

2-differentially uniform S-Boxes are called Almost Perfect Non-linear (APN)

APN S-Boxes are optimal against some statistical attacks

2-differentially uniform S-Boxes are called Almost Perfect Non-linear (APN)

APN S-Boxes are optimal against some statistical attacks

Unfortunately NO APN permutation of even dimension has yet been found except one of dimension 6.

- when s = 4 no permutation is APN (Calderini, Sala and Villa, 2017)
- when s = 6, only one is known (Dillon APN permutation, 2009)

2-differentially uniform S-Boxes are called Almost Perfect Non-linear (APN)

APN S-Boxes are optimal against some statistical attacks

Unfortunately NO APN permutation of even dimension has yet been found except one of dimension 6.

- when s = 4 no permutation is APN (Calderini, Sala and Villa, 2017)
- when s = 6, only one is known (Dillon APN permutation, 2009)

If s < t, there exist $s \times t$ APN injective S-Boxes

2-differentially uniform S-Boxes are called Almost Perfect Non-linear (APN)

APN S-Boxes are optimal against some statistical attacks

Unfortunately NO APN permutation of even dimension has yet been found except one of dimension 6.

- when s = 4 no permutation is APN (Calderini, Sala and Villa, 2017)
- when s = 6, only one is known (Dillon APN permutation, 2009)

If s < t, there exist $s \times t$ APN injective S-Boxes

Is it possible to define an iterated block cipher with such APN S-Boxes?

Generalisation of Round Functions: Wave functions

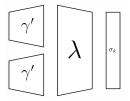
Let $V = V_1 \oplus V_2 \oplus \ldots \oplus V_b$, dim_{F₂}(V) = n and dim_{F₂} $(V_i) = s$.

Let $W = W_1 \oplus W_2 \oplus \ldots \oplus W_b$, dim_{F₂} $(W) = m \ge n$ and dim_{F₂} $(W_i) = t$.

Generalisation of Round Functions: Wave functions

Let $V = V_1 \oplus V_2 \oplus \ldots \oplus V_b$, dim_{\mathbb{F}_2}(V) = n and dim_{\mathbb{F}_2} $(V_i) = s$.

Let $W = W_1 \oplus W_2 \oplus \ldots \oplus W_b$, dim_{F₂} $(W) = m \ge n$ and dim_{F₂} $(W_i) = t$.



For each $c \in V$, we define a Wave function induced by c as a map $\varepsilon_c : V \to V$, where $\varepsilon_c = \gamma \lambda \sigma_c$ and

• $\gamma: V \to W$ is an injective non-linear bricklayer transformation which acts independently on each V_j

The map $\gamma': V_j \rightarrow W_j$ is an injective S-box

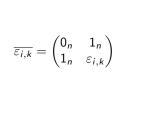
• $\lambda: W \to V$ is a surjective mixing linear

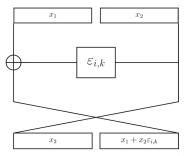
•
$$\sigma_c: V \to V$$
 is the key addition

Wave ciphers

In order to guarantee an efficient decryption, we propose to use Wave functions inside a Feistel Network

An *r*-round Wave block cipher C is a family of encryption functions $\{\varepsilon_k \mid k \in \mathcal{K}\} \subseteq \text{Sym}(V \times V)$ such that for each $k \in \mathcal{K}$ $\varepsilon_k = \overline{\varepsilon_{1,k}\varepsilon_{2,k}} \dots \overline{\varepsilon_{r,k}}$, where $\overline{\varepsilon_{i,k}}$ is the formal operator





and $\varepsilon_{i,k} = \gamma \lambda \sigma_{k_i}$ is an *n*-bit Wave function.

Riccardo Aragona

Group Theoretical Security of Block ciphers

Weaknesses based on group theoretical properties Let C be an *r*-round iterated block cipher acting on V. The group generated by the round functions

$$\Gamma_{\infty}(\mathcal{C}) \stackrel{\text{\tiny def}}{=} \langle \varepsilon_{k,h} \in \operatorname{Sym}(V) \mid k \in \mathcal{K}, h = 1, \dots, r \rangle$$

can reveal dangerous weaknesses of the cipher:

- the group is too small (Kaliski, Rivest and Sherman, 1998)
- the group is of affine type (Calderini and Sala, 2015)
- the group acts imprimitively on the message space (Paterson, 1999)

Group Theoretical Security of Block ciphers

Weaknesses based on group theoretical properties Let C be an *r*-round iterated block cipher acting on V. The group generated by the round functions

$$\Gamma_{\infty}(\mathcal{C}) \stackrel{\text{\tiny def}}{=} \langle arepsilon_{k,h} \in \operatorname{Sym}(V) \mid k \in \mathcal{K}, h = 1, \dots, r
angle$$

can reveal dangerous weaknesses of the cipher:

- the group is too small (Kaliski, Rivest and Sherman, 1998)
- the group is of affine type (Calderini and Sala, 2015)
- the group acts imprimitively on the message space (Paterson, 1999)

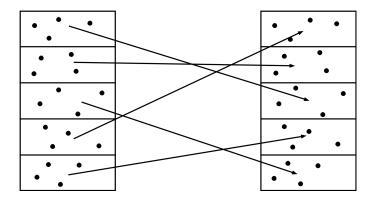
Under some cryptographic assumptions for a Wave cipher C

 $\Gamma_{\infty}(\mathcal{C})$ is primitive

Imprimitive attack

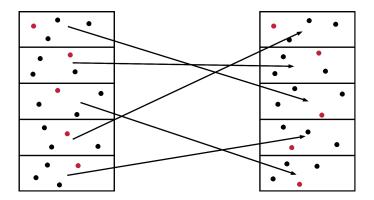
Let $\ensuremath{\mathcal{C}}$ be an r-round iterated block cipher.

Suppose that $\Gamma_{\infty}(\mathcal{C})$ is imprimitive, then there exists a partition \mathcal{B} of V such that for any encryption function $\varepsilon_k \in \Gamma_{\infty}$, we have $B\varepsilon_k \in \mathcal{B}$ for all $B \in \mathcal{B}$.



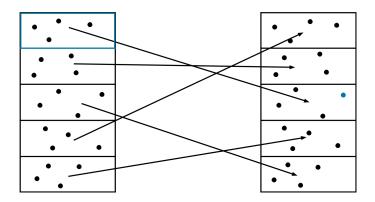
Imprimitive attack

Preprocessing performed ones per key:



Imprimitive attack

Real-time processing:



Group generated by the round functions of a Wave cipher

Let $\varepsilon_{i,k} = \gamma \lambda \sigma_{k_i} \in \text{Sym}(V)$ be an *n*-bit Wave function. We define

$$\Gamma_{i} \stackrel{\text{\tiny def}}{=} \langle \varepsilon_{i,k} \mid k \in \mathcal{K} \rangle \quad \text{and} \quad \overline{\Gamma}_{i} \stackrel{\text{\tiny def}}{=} \langle \overline{\varepsilon_{i,k}} \mid k \in \mathcal{K} \rangle,$$

where

$$\overline{\varepsilon_{i,k}} = \begin{pmatrix} 0_n & 1_n \\ 1_n & \varepsilon_{i,k} \end{pmatrix}.$$

Hence

$$\Gamma_{\infty}(\mathcal{C}) \stackrel{\text{\tiny def}}{=} \langle \overline{\Gamma}_i \mid 1 \leq i \leq r \rangle.$$

Our goal Show that $\Gamma_{\infty}(\mathcal{C})$ is primitive

Group generated by the round functions of a Wave cipher

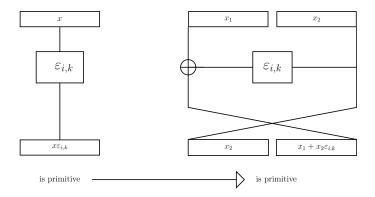
Let us denote with

Being $\rho \stackrel{\text{def}}{=} \gamma \lambda$ and denoting with $\overline{\rho}$ the formal operator $\begin{pmatrix} 0_n & 1_n \\ 1_n & \rho \end{pmatrix}$ one has $\Gamma_i = \langle T_n, \rho \rangle$ and $\overline{\Gamma}_i(\mathcal{C}) = \langle T_{(0,n)}, \overline{\rho} \rangle$,

for any $1 \leq i \leq r$.

Security Reduction

Theorem (A., Calderini, Civino, Sala, Zappatore) If $\gamma \lambda \in \text{Sym}(V) \setminus \text{AGL}(V)$ and $\Gamma_i = \langle T_n, \rho \rangle$ is primitive on V, then $\overline{\Gamma}_i(\mathcal{C}) = \langle T_{(0,n)}, \overline{\rho} \rangle$ is primitive on $V \times V$.



Two other security assumptions for the components of a Wave function

Definition

A wall of V (resp. W) is any nontrivial sum of proper bricks of V (resp. W). A linear transformation $\lambda : W \longrightarrow V$ is a proper mixing layer if for any nontrivial wall $W' = \bigoplus_{i \in I} W_i$ of W and $V' = \bigoplus_{i \in I} V_i$ of V, where $I \subset \{1, \ldots, m\}$, then $V'\lambda^{-1} \not\subset W' + \text{Ker }\lambda.$

Definition

Let $j \in \{1, 2, ..., b\}$, $\gamma_j : V_j \to W_j$ be an S-box such that $0\gamma_j = 0$, and $\lambda : W \to V$ be a surjective linear map. Given $0 \le l < s$, γ_j is *l*-non-invariant with respect to λ if for any proper subspaces $V' < V_j$ and $W' < W_j$ such that $V'\gamma_j + (\operatorname{Ker} \lambda \cap W_j) = W'$, then $\dim(W') < s - l$.

Theorem (A., Calderini, Civino, Sala, Zappatore)

Let C be Wave cipher with a proper mixing layer λ . If there exists $1 \le l < s$ such that each S-box γ_j is

- 2¹- differentially uniform,
- (I-1)-non-invariant with respect to λ ,

and if Ker $\lambda = \bigoplus_{j=1}^{b} \text{Ker } \lambda \cap W_j$, then Γ_i is primitive (and so it is $\Gamma_{\infty}(\mathcal{C})$).

Several problems arise from the new construction regarding Wave functions and Wave ciphers $\mathcal{C},$ such as:

► Determining conditions on the Wave functions to ensure that $\Gamma_{\infty}(C)$ is the alternating group.

Several problems arise from the new construction regarding Wave functions and Wave ciphers $\mathcal{C},$ such as:

- Determining conditions on the Wave functions to ensure that Γ_∞(C) is the alternating group.
- Studying the group generated by the round functions of a Wave cipher for which the function $\gamma\lambda$ is not invertible. Note that in this case, we cannot use the result Γ_i primitive implies Γ_{∞} primitive unless we consider in some way the transformation monoid generated by the wave functions.

Several problems arise from the new construction regarding Wave functions and Wave ciphers \mathcal{C} , such as:

- Determining conditions on the Wave functions to ensure that Γ_∞(C) is the alternating group.
- Studying the group generated by the round functions of a Wave cipher for which the function $\gamma\lambda$ is not invertible. Note that in this case, we cannot use the result Γ_i primitive implies Γ_{∞} primitive unless we consider in some way the transformation monoid generated by the wave functions.
- Studying the resistance of a Wave cipher with respect to other statistical attacks, for example studying the impact of differential and linear cryptanalysis on the Wave-shaped structure.

Several problems arise from the new construction regarding Wave functions and Wave ciphers C, such as:

- Determining conditions on the Wave functions to ensure that Γ_∞(C) is the alternating group.
- Studying the group generated by the round functions of a Wave cipher for which the function $\gamma\lambda$ is not invertible. Note that in this case, we cannot use the result Γ_i primitive implies Γ_{∞} primitive unless we consider in some way the transformation monoid generated by the wave functions.
- Studying the resistance of a Wave cipher with respect to other statistical attacks, for example studying the impact of differential and linear cryptanalysis on the Wave-shaped structure.

Finally, to the best of our knowledge, $s \times t$ APN functions with s < t are not very much investigated in literature.

Thanks for your attention!