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A V:

Theorem
R. Brauer, K.A. Fowler — 1955

Let G be a finite group of even order n. Then G contains a proper
subgroup of order strictly larger than /n.




Corollary

R. Brauer, K.A. Fowler — 1955

There exist only a finite number of simple groups in which the
centralizer of an involution is isomorphic to a given group.
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A V:

Kargapolov, Hall-Kulatilaka (1963-1964) - Let G be an infinite
locally finite group. Then G contains a non-trivial element whose
centralizer is infinite.
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£ V:

Kargapolov, Hall-Kulatilaka (1963-1964) - Let G be an infinite
locally finite group. Then G contains a non-trivial element whose
centralizer is infinite.

Sunkov (1965) - Let G be an infinite simple locally finite group.
Then every involution of G has infinite centralizer.
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e V:

Let X be a class of groups and let G be a locally finite simple
group. Is the centralizer of every X-subgroup of G "big”?
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Let X be a class of groups and let G be a locally finite simple
group. Is the centralizer of every X-subgroup of G "big”?

or

Let X be a class of groups and let G be a locally finite group.
What can be said about G if the centralizer of an X-subgroup is
“small”?
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A V:

v

Hartley—Kuzucuoglu (1991) - Let G be an infinite simple locally
finite group. Then every non-trivial element of G has infinite
centralizer.
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Hartley—Kuzucuoglu (1991) - Let G be an infinite simple locally
finite group. Then every non-trivial element of G has infinite
centralizer.

Hartley (1992) - Let G be alocally finite group. If G has an element
with finite centralizer, then G is (locally soluble)-by-finite.
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£ V:

Hartley—Kuzucuoglu (1991) - Let G be an infinite simple locally
finite group. Then every non-trivial element of G has infinite
centralizer.

Hartley (1992) - Let G be alocally finite group. If G has an element
with finite centralizer, then G is (locally soluble)-by-finite.

Meierfrankenfeld (2007) - There exists a non-linear locally finite
simple groups in which every involution has (locally soluble)-
by-finite centralizer.
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And many results onlocally finite groups in which the centralizers
of involutions satisfy some finiteness conditions
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Let X be a class of groups and let G be a locally finite simple
group. Is the centralizer of every X-subgroup of G “big”?
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Let X be a class of groups and let G be a locally finite simple
group. Is the centralizer of every X-subgroup of G “big”?

4

Let G be a locally finite simple group. Has the centralizer of
every finite p-subgroup infinite non-abelian rank?
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Let G be any group. We will say that G has finite non-abelian
rank if there exists a non-negative integer n such that G admits
no subgroups which are direct product of more than n factors
provided that one of them is a non-abelian subgroup of G.
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Let G be any group. We will say that G has finite non-abelian
rank if there exists a non-negative integer n such that G admits
no subgroups which are direct product of more than n factors
provided that one of them is a non-abelian subgroup of G. The
least integer n with this property is called the non-abelian rank
of G. Clearly, if such an integer n does not exist, we say that G
has infinite non-abelian rank.
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Let G be any group. We will say that G has finite non-abelian
rank if there exists a non-negative integer n such that G admits
no subgroups which are direct product of more than n factors
provided that one of them is a non-abelian subgroup of G. The
least integer n with this property is called the non-abelian rank
of G. Clearly, if such an integer n does not exist, we say that G
has infinite non-abelian rank.

Hp x Hy x .-+ x Hyy x - -+ where Hg is non-abelian.
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Let X be a class of groups and let G be a locally finite simple
group. Is the centralizer of every X-subgroup of G “big”?

4

Let G be a locally finite simple group. Has the centralizer of
every finite p-subgroup finite non-abelian rank?
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Theorem
A. Russo, M. B. — 2019

Let G be any infinite simple locally finite group. Then either
G is isomorphic to PSL(2, F), where F is an infinite locally finite
field, or G contains a subgroup which is the direct product of
an infinite abelian subgroup of prime exponent p and a finite
non-abelian p-subgroup.
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Theorem

A. Russo, M. B. - 2019

Let G be any infinite simple locally finite group. Then either
G is isomorphic to PSL(2, F), where F is an infinite locally finite
field, or G contains a subgroup which is the direct product of
an infinite abelian subgroup of prime exponent p and a finite
non-abelian p-subgroup.

In particular, any infinite simple locally finite group (with the
exclusion of PSL(2,F), which has non-abelian rank at most 2)
has infinite non-abelian rank and contains a finite non-abelian
subgroup with an infinite centralizer.
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Let F be an infinite locally finite field of characteristic 2 and
0 € AutF such that £ = 2 for each f € F.
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e V:

For any couple of elements « and {3 in F one defines

1 0 0 O

104 1 0 O

(«,B) = ol 4 B «® 1 0
WO axp+p% B o 1
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4

For any couple of elements « and {3 in F one defines

1 0O 0 0

104 1 0 O

(«,B) = ol 4 B «® 1 0
O(2+e+oc[3+[39 B o 1

Notice that («, B)(y,8) = (x +7v, xy® + B +8).
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A V:

v

Let T be an infinite locally finite field of characteristic 2 and
0 € AutF such that £ = f2 for each f € F.

QO A={(e, B)lx,p € F
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A V:

v

Let T be an infinite locally finite field of characteristic 2 and
0 € AutF such that £ = f2 for each f € F.

QO A={(,B)lx,p €F};
@ D ={diag(f1+0 ", 0", £ 0 - 1-07)f c F),
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£ V:

>
v

Let T be an infinite locally finite field of characteristic 2 and
0 € AutF such that £ = f2 for each f € F.

QO A={(o,B)lex, p € F};

Q@ D ={diag(f1+0 ", 0" 0 f1-0")f c F);

o
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oot
0100
100 0
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Let T be an infinite locally finite field of characteristic 2 and
0 € AutF such that £ = f2 for each f € F.

QO A={(o,B)lex, p € F};

Q@ D ={diag(f1+0 ", 0" 0 f1-0")f c F);

o
0001
oot
0100
100 0
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e V:

It is easy to see that A is a nilpotent non-abelian 2-subgroup of
the group and that the subgroup H of A generated by all (0, 3) is
the centre of A and is isomorphic with the additive group of F.
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(O/ B) =

%@Or—\
o O = O
O = OO
—_ O O O

Remind that (&, B)(v,8) = (c + v, cy® + p + 5).
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e V:

It is easy to see that A is a nilpotent non-abelian 2-subgroup of
the group and that the subgroup H of A generated by all (0, 3)
is the centre of A and is isomorphic with the additive group of
F. Hence, once taken two elements « and f in F \ {0} such that
xP® # «®B, we have that {(e,0), (B,0))H is decomposable into
an infinite direct product of the requested type.
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» V:

Theorem

Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:
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Theorem

Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:

© an elementary abelian p-group of any finite order;

@ acyclic group;
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Theorem

Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:
© an elementary abelian p-group of any finite order;
@ acyclic group;
@ adihedral group;
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Theorem
Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:
© an elementary abelian p-group of any finite order;
@ acyclic group;
@ adihedral group;
© the symmetric group on 4 elements;
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Theorem
Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:
© an elementary abelian p-group of any finite order;
@ acyclic group;
@ adihedral group;
© the symmetric group on 4 elements;

@ the alternating group on 5 elements;
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Theorem

Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:

© an elementary abelian p-group of any finite order;

@ acyclic group;

@ adihedral group;

© the symmetric group on 4 elements;

@ the alternating group on 5 elements;

@ a group of type H < K, where K is elementary abelian and
H is cyclic acting fixed-point-freely on K;
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Theorem

Let F be an infinite locally finite field of characteristic p. Then a
finite subgroup of PSL(2, F) can be only of the following types:

© an elementary abelian p-group of any finite order;

@ acyclic group;

@ adihedral group;

© the symmetric group on 4 elements;

@ the alternating group on 5 elements;

@ a group of type H < K, where K is elementary abelian and

H is cyclic acting fixed-point-freely on K;

@ PSL(2,F,n) for any positive integer n dividing the Steinitz
number of F.
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Corollary

Let F be an infinite locally finite field. Then PSL(2, F) has
non-abelian rank 2.
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A V:

Main theorem rephrased

Let G be an infinite simple locally finite group. Then G is
isomorphic to PSL(2, F) if and only if G has finite non-abelian
rank. In this case, the rank of G is 2.
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e Applications v

This result can be even "applied”.
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e Applications v

This result can be even “applied”.

O.Yu. Dashkova (1997) - Let G be a locally finite group of finite
non-abelian rank. Then G cannot be simple.

O.Yu. Dashkova (1999) - Let G be a locally finite group of finite
non-abelian section rank. Then G cannot be simple.

M.B., Russo (2019) - Let G be a locally finite group satisfying
the double chain condition on non-abelian subgroups. Then G
cannot be simple.
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e Further generalizations v:

@ Do all locally finite simple groups (except for PSL(2, F))
contain a subgroup which is the direct product of an
abelian subgroup of infinite rank and a finite non-nilpotent
subgroup?
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contain a subgroup which is the direct product of an
abelian subgroup of infinite rank and a finite non-nilpotent
subgroup?

Do all locally finite simple groups (except for PSL(2, F))
contain a subgroup which is the direct product of an
infinite abelian subgroup of prime exponent p and a finite
non-nilpotent subgroup?
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Further generalizations v:

@ Do all locally finite simple groups (except for PSL(2, F))
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contain a subgroup which is the direct product of an
abelian subgroup of infinite rank and a finite non-nilpotent
subgroup?

Do all locally finite simple groups (except for PSL(2, F))
contain a subgroup which is the direct product of an
infinite abelian subgroup of prime exponent p and a finite
non-nilpotent subgroup?

Do all locally finite simple groups (except for PSL(2, F))
contain a subgroup which is the direct product of an
infinite abelian subgroup of infinite rank and a finite
simple subgroup?

On centralizers of locally finite simple groups 2324



Thank you for your attention
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