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Binary Expansions

Each positive integer n can be expressed uniquely in the form

n = x12k−1 + x22k−2 + · · ·+ xk−12 + xk .

where xi ∈ {0, 1} and x1 6= 0.

The word x1 . . . xk is the binary expansion of n.

The word 101 is the binary expansion of n = 5:

5 = 1 · 22 + 0 · 21 + 1.
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Hyperbinary Expansions

Each positive integer n can be expressed���
�XXXXuniquely in the form

n = x12k−1 + x22k−2 + · · ·+ xk−12 + xk .

where xi ∈ {0, 1, 2} and x1 6= 0.

The word x1 . . . xk is a hyperbinary expansion of n.

The words 101 and 21 are both hyperbinary expansions of n = 5:

5 = 1 · 22 + 0 · 21 + 1 and 5 = 2 · 21 + 1.

The binary expansion of n is a particular hyperbinary expansion of
n.
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Applications in Number Theory

There has been a growing interest toward hyperbinary expansions
in the last two decades.

H(n) = {hyperbinary expansions of n}. ∀n > 0

b(0) = 1 and b(n) = |H(n)| for n > 0.

Theorem (Calkin-Wilf, 2000)

All positive rationals appear just once in the sequence{ b(n)

b(n + 1)

}
n≥0

,

Key point: b(2n + 1) = b(n) and b(2n) = b(n) + b(n − 1).
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The Calkin-Wilf tree

{ b(n)

b(n + 1)

}
n≥0

, is the Calkin-Wilf sequence

The Calkin-Wilf rooted
tree

each a/b has two
children:

a/(a + b) and
(a + b)/b.
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Applications to Number Theory
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Combinatorics on words
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The main problem

Fact

|H(n)| = 1⇐⇒ n = 2k − 1 (k ∈ IN).

In order to find bounds for the value b(n) = |H(n)|, we ask:

‘The’ Problem

Let n 6= 2k − 1. Given any hyperbinary expansion x ∈ H(n). How
‘far’ is x from being binary?
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Measuring non-binarity (1)

• First tool: Count the number of 2’s in x.

Example

In H(20) we have

#2(1212) > #2(2100) = #2(10012) > #2(10100) = 0.

Note that a hyperbinary expansion has no 2’s iff it is binary...
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Measuring non-binarity (2)

• Second tool: The shortlex ordering <SL.

Sequences are primarily sorted by length with the shortest
sequences first, and sequences of the same length are sorted into
lexicographical order.

Example

In H(20) we have

1212 <SL 2100 <SL 10012 <SL 10100.

In H(n), the (unique) hyperbinary expansion n′ not containing 0’s
is minimal with respect to <SL.
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Some basic ingredients
from the Theory of formal languages

The alphabet: Σ = {0, 1, 2}.
The words: the free monoid Σ∗.

The equivalence relation ∼ that identifies two words in Σ∗

differing only in zeros on the left-hand side.

00210 ∼ 0210 ∼ 210.

Σ∗/ ∼= ∪n≥1H(n).
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Re-writing systems

The rewrite rules:

02 → 10 and 12 � 20.

The single-step reductions:

x 0 2 y→ x 1 0 y and x 1 2 y � x 2 0 y ∀ x, y ∈ Σ∗.

u
∗→R v. means that u and v in Σ∗ are connected by a finite

number k > 0 of single-step reductions.

u is called an ancestor of v, and v is a descendant of u.
If k = 1, we also say that u is a parent of v, and v a child of u.
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Crucial Proposition

Single-step reductions map elements in H(n) onto element in
H(n).

Proof.

For all s ∈ IN, 0 · 2s + 2 · 2s−1 = 1 · 2s + 0 · 2s−1;

1 · 2s + 2 · 2s−1 = 2 · 2s + 0 · 2s−1.
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Setting up the graph A(n)

The several hyperbinary expansions of the integer n can be
displayed like the vertices of a genealogical tree.

(which is not
always a tree from the graph-theoretical point of view: it is
connected but it may contain cycles).

122

202

1002 210

1010

A(10)

02 → 10 and 12 � 20.

|V (A(n))| = b(n).

The red ball is the unique
binary expansion.

The green ball is the unique
expansion without 0’s.
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General properties of A(n)

The graph A(n) is simple: no node is a parent of itself and
there is at most one arc connecting two nodes.

The set of edges E(n) is empty if and only if n = 2k − 1.

A(n) has a single root (i.e. a node with no ancestors) given by
n′, the unique hyperbinary expansion without 0’s.

No node in A(n) is an ancestor of itself.

A(n) is a flowchart, i.e. is pointed accessible: for every node
n 6= n′ there exists at least one path from the root to n.

The flowchart A(n) has a global sink: all paths end to the
binary expansion n′′, the unique node without children.
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Retrieving the recursive functions

b(2n + 1) = b(n)

12

20

100

A(4)

121

201

1001

A(2 · 4 + 1)

b(2n) = b(n) + b(n − 1)

1122

1202

2002 1210

10002 2010

10010

A(18)
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Generations

We say that n ∈ H(n) belongs to the k-th generation
if it is k − 1 single-step reductions away from the common ancestor
n′ (the hyperbinary expansion without 0’s).

1212

2012 1220

202010012

10020 2100

10100

A(20)

1st gen.

2nd gen.

3rd gen.

4th gen.

5th gen.

‘Binarity’
increases

with ‘youth level’.
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The map ω

The youth level (i. e. the generation) can be equivalently
computed through the map

ω : x1x2 · · · xk ∈ Σ∗ −→ x1 + · · ·+ xk ∈ IN.
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Few theorems

The youth level (i. e. the generation) can be equivalently
computed through the map

ω : x1x2 · · · xk ∈ Σ∗ −→ x1 + · · ·+ xk ∈ IN.

Theorem (D’A.-Brunetti (2019))

Let n′ ∈ H(n) be the unique hyperbinary expansion without 0’s,
and let n′′ ∈ H(n) be the unique binary expansion.

Any hyperbinary expansion n ∈ H(n) is
i(n) single-step transformations away from n′′

and j(n) single-step transformations away from n′,
where

i(n) = ω(n)− ω(n′′), and j(n) = ω(n′)− ω(n).
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Few theorems

Theorem (D’A.-Brunetti (2019))

Let n′ ∈ H(n) be the unique hyperbinary expansion without 0’s,
and let n′′ ∈ H(n) be the unique binary expansion.

b(n) ≥ ω(n′′)− ω(n′) + 1.

The equality holds if and only if the graph A(n) is a tree.
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Few theorems

Theorem (D’A.-Brunetti (2019))

The graph A(n) is a tree if and only if there exists
(s, t) ∈ IN0 × IN0 such that

n = 2s+t+1 2s − 1 > 0.

min{n |A(n) is not a tree} = 10.

the difference b(n)− ω(n′′) + ω(n′)− 1 increases with the
cyclomatic number ν(n).
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The cyclomatic number

Definition

Let V (G ) and E (G ) be the set of vertices and edges respectively
of a connected graph G . The cyclomatic number ν(G ) of G is
given by

ν(G ) = |E (G )| − |V (G )|+ 1

ν(G ) counts the number of generators of the fundamental group
π1(G ) (which is free non-abelian).

Theorem (D’A.-Brunetti (2019))

Let n be a positive integer not equal to 2k − 1. The following
formula holds.

ν(A(n)) =
∑

n6=n′′

(o(n)− 1),

where o(n) is the outdegree of n, i.e. the number of its children.
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Unicyclic graphs and open problems

Theorem (D’A.-Brunetti (2019))

ν(A(n)) = 1⇐⇒ n = 2`(12 1)− 1 for a suitable ` ≥ 0.

Open problems

For every k > 1, identify the set

Sk = {n ∈ IN | ν(A(n)) = k};

Topologically classify A(n)’s as graphs (∼=) and as directed
edge-coloured graphs (∼=dec).
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Unicyclic graphs and open problems

A(n) ∼=dec A(m) =⇒ A(n) ∼= A(m) =⇒ ν(A(n)) = ν(A(m))

ν(A(n)) = ν(A(m)) 6=⇒ A(n) ∼= A(m)

ν(A(n)) = ν(A(m)) 6=⇒ A(n) ∼=dec A(m)

ν(A(10)) = ν(A(12)) = 1, b(10) = b(12) = 5 but A(10) 6∼= A(12).

(look at the edges!)

122

202

1002 210

1010

A(10)

212

1012 220

1020

1100
A(12)
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Unicyclic graphs and open problems

Conjecture

Suppose m > n ≥ 1.
A(n) ∼=dec A(m) if and only if m = 2`(n + 1)− 1 for a suitable
` > 0.

A(1) ∼=dec A(3) ∼=dec A(7) ∼=dec · · ·
A(2) ∼=dec A(5) ∼=dec A(11) ∼=dec · · ·
A(4) ∼=dec A(9) ∼=dec A(19) ∼=dec · · ·

· · · · · · · · ·
A(2q) ∼=dec A(4q + 1) ∼=dec A(8q + 3) ∼=dec · · ·
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SandGAL

Cremona, June 10-13, 2019

Thank you!
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